Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Ngãi

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề thi học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022-2023 sở GD&ĐT Quảng Ngãi Đề thi học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022-2023 sở GD&ĐT Quảng Ngãi Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Quảng Ngãi. Đề thi bao gồm đáp án, lời giải chi tiết và thang điểm. Kì thi sẽ diễn ra vào ngày 16 tháng 02 năm 2023. Trích dẫn đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022-2023 sở GD&ĐT Quảng Ngãi: + Một học sinh có tấm bìa hình vuông ABCD cạnh 20 cm. Em muốn cắt tấm bìa này thành bốn hình tam giác vuông bằng nhau và phần còn lại là hình vuông MNPQ thỏa mãn M N PQ lần lượt thuộc các cạnh AB BC CD DA. Hãy xác định vị trí các điểm M N PQ để diện tích hình vuông MNPQ là nhỏ nhất. + Cho đường tròn tâm O đường kính AB R 2. Điểm M di động trên đoạn OA (M khác A), vẽ đường tròn tâm K đường kính MB. Gọi I là trung điểm của đoạn MA, đường thẳng đi qua I vuông góc với AB cắt đường tròn (O) tại C và D. Đường thẳng CB cắt đường tròn (K) tại P. a) Chứng minh rằng ba điểm P M D thẳng hàng. b) Chứng minh rằng PI là tiếp tuyến của đường tròn (K). c) Tìm vị trí của M trên đoạn OA để diện tích tam giác IPK lớn nhất. + Người ta làm một cái hộp hình vuông để đựng được 5 cái bánh hình tròn có đường kính 6 cm sao cho không có bất kì hai cái bánh nào được chồng lên nhau. Hãy tính cạnh nhỏ nhất của cái hộp. File WORD (dành cho quý thầy, cô): [link download]

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.
Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.