Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung)

Nội dung Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Vào ngày thứ Ba, ngày 28 tháng 05 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư phạm Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán dành cho năm học 2019 - 2020. Mục tiêu của kỳ thi là tuyển chọn những học sinh đạt yêu cầu về kiến thức, để chuẩn bị cho một năm học mới đầy hứng khởi. Đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên Đại học Sư phạm Hà Nội (đề chung) được sử dụng cho tất cả thí sinh dự thi vào trường. Đề thi bao gồm 1 trang với 5 bài toán, thí sinh phải hoàn thành bài thi trong thời gian 120 phút. Chi tiết đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên ĐHSP Hà Nội (Đề chung) bao gồm: Trên quãng đường AB có độ dài 20km, bạn An và bạn Bình đi bộ từ 2 hướng khác nhau. Sau 2 giờ, họ gặp nhau tại C và nghỉ 15 phút. Sau đó, họ tiếp tục hành trình với vận tốc khác nhau và An đến B sớm hơn Bình đến A 48 phút. Yêu cầu: Tính vận tốc của An trên đoạn AC. Cho đường tròn (O) ngoại tiếp tam giác ABC. Xác định điểm A’ và C’ trên đường tròn sao cho A1C1 cắt đường tròn (O) tại A’ và C’ (với A1 nằm giữa A’ và C1). Tìm mối quan hệ giữa HC1, A1C và A1C1, chứng minh ba điểm B, B’, O thẳng hàng, và tính A’C’ khi tam giác ABC là tam giác đều. Xác định hệ số của đa thức P(x) và Q(x) để thỏa mãn các điều kiện cần đưa ra. Đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên ĐHSP Hà Nội (Đề chung) không chỉ đánh giá kiến thức của thí sinh mà còn đặt ra những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của học sinh. Hy vọng rằng các thí sinh sẽ có được một kỳ thi tuyển sinh thành công và đạt kết quả tốt nhất.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào 10 môn Toán cơ sở năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán cơ sở năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 23 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thanh Hóa
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm M(2;3). [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao BD, CE (D thuộc AC, E thuộc AB) của tam giác kéo dài lần lượt cắt đường tròn (O) tại các điểm M và N (M khác B, N khác C). 1. Chứng minh tứ giác BCDE nội tiếp được trong một đường tròn. 2. Chứng minh MN song song với DE. 3. Khi đường tròn (O) và dây BC cố định, điểm A di động trên cùng lớn BC sao cho tam giác ABC nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí của điểm A để diện tích tam giác ADE đạt giá trị lớn nhất. + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị nhỏ nhất của biểu thức: Q = (y + 2)/x^2 + (z + 2)/y^2 + (x + 2)/z^2.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Quảng Ninh
Sáng thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh : + Cho phương trình x^2 + 4x + 3m – 2 = 0, với m là tham số. 1. Giải phương trình với m = -1. 2. Tìm giá trị của m để phương trình đã cho có một nghiệm x = 2. 3. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 sao cho x1 + 2×2 = 1. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông A và B là 32 km. Một canô xuôi dòng từ bến A đến bến B rồi lập tức quay về bến A. Kể từ lúc khởi hành đến lúc về tới bến A hết tất cả 6 giờ. Tính vận tốc của cano khi nước yên lặng, biết vận tốc của dòng nước là 4 km/h. [ads] + Cho đường tròn (O;R) và A là một điểm nằm bên ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC với đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của AO và BC. Kẻ đường kính BD của đường tròn (O). AD cắt đường tròn tại điểm thứ hai là E. a. Chứng minh ABOC là tứ giác nội tiếp. b. Tính độ dài AH, biết R = 3cm, AB = 4cm. c. Chứng minh AE.AD = AH.AO. d. Tia CE cắt AH tại F. Chứng tỏ F là trung điểm của AH.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Khánh Hòa
Thứ Năm ngày 16 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Khánh Hòa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Khánh Hòa : + Để chung tay phòng chống dịch COVID-19, hai trường A và B trên địa bàn tỉnh Khánh Hòa phát động phong trào quyên góp ủng hộ người dân có hoàn cảnh khó khăn. Hai trường đã quyên góp được 1137 phần quà gồm mì tôm (đơn vị thùng) và gạo (đơn vị bao). Trong đó, mỗi lớp của trường A ủng hộ được 8 thùng mì và 5 bao gạo; mỗi lớp của trường B ủng hộ được 7 thùng mì và 8 bao gạo. Biết số bao gạo ít hơn số thùng mì là 75 phần quà. Hỏi mỗi trường có bao nhiêu lớp? [ads] + Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H. a. Chứng minh tứ giác IMON nội tiếp đường tròn. b. Chứng minh IM.IN = IH.IK. c. Kẻ NP vuông góc với MK. Chứng minh đường thẳng IK đi qua trung điểm của NP. + Giải phương trình x2 – 5x + 4 = 0.