Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp chuẩn hóa tọa độ giải hình học phẳng Oxy - Nguyễn Tiến Chinh

Tài liệu Phương pháp chuẩn hóa tọa độ giải nhanh hình học tọa độ phẳng Oxy của thầy Nguyễn Tiến Chinh gồm 9 trang với 10 ví dụ được giải quyết và phân tích chi tiết. Các bước CHUẨN HÓA TỌA ĐỘ: 1. Chọn hệ trục tọa độ – thường chọn gốc tại chân góc vuông. 2. Chọn cạnh hình lớn để chuẩn hóa độ dài. + Đối với các bài toán có một trong các tứ giác như: hình vuông, hình chữ nhật, tam giác vuông. Đối với các hình như vậy ta có thể chọn hệ trục tọa độ có gốc nằm tại một đỉnh vuông, có hai trục Ox và Oy chứa 2 cạnh tương ứng của góc vuông đó. Và chọn đơn vị trên các trục bằng độ dài của một trong hai cạnh góc vuông. Bằng cách chọn như vậy, các tham số được giảm tối đa có thể. Và dạng hình này cũng là dạng áp dụng thuận lợi nhất phương pháp tọa độ trong mặt phẳng này. [ads] + Đối với các bài toán có chứa tam giác đều, tam giác cân, tam giác thường. Ta có thể xây dựng một hệ trục bằng cách dựa vào đường cao. Cụ thể, ta dựng đường cao từ một đỉnhbất kỳ (đối với tam giác cân ta nên dựng đường cao từ đỉnh cân). Chân đường cao khi đó chính là góc tọa độ, cạnh đáy và đường cao vừa dựng nằm trên hai trục tọa độ. + Đối với các bài toán có chứa các đường tròn thì ta có thể chọn góc tọa độ nằm tại tâm của đường tròn và đơn vị của hệ tọa độ bằng bán kính đường tròn, một hoặc hai trục chứa bán kính, đường kính của đường tròn.

Nguồn: toanmath.com

Đọc Sách

30 tính chất hình học Oxy điển hình - Trần Văn Tài - Hứa Lâm Phong
Tài liệu Soi kính lúp hình học phẳng Oxy được biên soạn bởi thầy Trần Văn Tài và thầy Hứa Lâm Phong giới thiệu 30 tính chất hình học phẳng thường dùng trong giải toán Oxy, chứng minh tính chất và áp dụng vào trong các bài toán cụ thể. Tài liệu gồm 3 phần: 1. Giới thiệu và chứng minh 30 tính chất hình phẳng thường gặp dùng để giải nhanh bài toán Oxy Để giúp bạn đọc rèn luyện thêm cho mình những kỹ năng trong quá trình chứng minh một số tính chất hình học, tác giả bổ sung thêm vào chuyên đề mục sau. Ngoài cách chứng minh đã nêu có thể có thêm những cách chứng minh khác nữa. Điều này tùy thuộc vào khả năng tư duy và lĩnh hội cũng như sở trường của mỗi người. Tựu trung lại thì hướng chứng minh vẫn xuất phát từ 4 con đường chính: [ads] + Một là, sử dụng các tính chất hình học thuần túy của THCS + Hai là, sử dụng phương pháp véctơ thuần túy (Hình học 10) + Ba là, sử dụng phương pháp tọa độ hóa kết hợp chuẩn hóa số liệu + Bốn là, sử dụng phương pháp tổng hợp (kết hợp các cách trên) 2. Phân dạng bài toán hình phẳng Oxy + Phần I. Các bài toán về tam giác + Phần II. Các bài toán về tứ giác + Phần III. Các bài toán về đường tròn + Phần phụ trợ tham khảo 3. Trích đề thi thử mới nhất 2016
Một số tính chất hay dùng trong hình học phẳng Oxy tập 2 - Võ Quang Mẫn
Tài liệu giới thiệu một số tính chất hay dùng trong hình học phẳng Oxy giúp giải nhanh các bài toán Oxy khó, tài liệu do thầy Võ Quang Mẫn biên soạn. Tài liệu bao gồm : I – TÍNH CHẤT KINH ĐIỂN CẦN NẮM VỮNG 1. Đường tròn Apolonius 2. Hàng điểm điều hòa 3. Phép nghịch đảo, cực và đối cực 4. Tứ giác nội tiếp có hai đường chéo vuông góc 5. Tứ giác ngoại tiếp [ads] 6. Hai đường tròn trực giao 7. Trực tâm, trung điểm và tính đối trung 8. Tâm nội tiếp của tam giác đường cao 9. Tập phân tích những bài toán có sự đối xứng, yếu tố trung tâm và mối liên hệ giữa chúng II – TÍNH CHẤT MỚI CÓ THỂ PHÙ HỢP VỚI XU HƯỚNG CỦA ĐỀ THI  III – TỔNG HỢP CÁC BÀI TRÊN NHÓM OXY Xem lại tập 1:  Vận dụng các tính chất hình học phẳng vào bài toán tọa độ Oxy – Võ Quang Mẫn (Tập 1 – phiên bản 2016)
Hình học Oxy tuyển chọn phân loại theo chủ đề - Mẫn Ngọc Quang
Tài liệu hình học Oxy tuyển chọn phân loại theo chủ đề của thầy Mẫn Ngọc Quang gồm 330 trang với các bài toán Oxy được giải chi tiết và phân loại theo từng chủ đề: – Phân loại theo hình đặc trưng: + Hình vuông + Hình chữ nhật + Hình thang + Hình bình hành + Hình thoi + Tam giác: Tam giác đều, tam giác cân, tam giác vuông, tam giác thường + Đường tròn [ads] – Phân loại theo tính chất hình học: + Vuông góc + Bằng nhau + Thẳng hàng + Song song + Phân giác + Tỉ lệ độ dài
Tuyển chọn bài toán Oxy bám sát kì thi THPT QG 2016 - Lê Anh Tuấn
Tài liệu gồm 22 trang tuyển chọn các bài toán Oxy hay và khó bám sát nội dung đề thi THPT Quốc gia 2016, tài liệu được biên soạn bởi thầy Lê Anh Tuấn. A. Phương pháp chung để giải quyết bài toán hình học giải tích phẳng gồm các bước sau: 1. Vẽ hình, xác định các yếu tố đã biết lên hình. 2. Khám phá các tính chất khác của hình (nếu cần). Chú ý tìm các đường vuông góc, song song, đồng quy; các đoạn bằng nhau, góc bằng nhau; các góc đặc biệt; quan hệ thuộc giữa điểm và đường thẳng, đường tròn …. 3. Xác định các điểm, đường thẳng (theo các kĩ thuật đã học) để thực hiện yêu cầu bài toán. B. Một số hướng khai thác giả thiết [ads] Dưới đây là một số hướng khai thác các giả thiết của đề bài. Dĩ nhiên, tùy vào từng bài cụ thể, ta còn có những hướng sử dụng khác. 1. Phương trình đường thẳng d 2. Phương trình đường tròn (C) 3. Điểm G là trọng tâm tam giác ABC 4. Điểm H là trực tâm của tam giác ABC 5. Điểm I là tâm đường tròn ngoại tiếp tam giác ABC 6. J là tâm đường tròn nội tiếp tam giác ABC 7. Đường thẳng d là đường phân giác trong góc BAC 8. Tứ giác nội tiếp