Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán - Lê Văn Hưng

Tài liệu gồm 182 trang được biên soạn bởi thầy giáo Lê Văn Hưng, tuyển tập 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, tương ứng với 5 bài toán trong các đề tuyển sinh vào lớp 10 của sở Giáo dục và Đào tạo Hà Nội. Trong mỗi chủ đề, tài liệu tóm tắt lý thuyết trọng tâm học sinh cần nắm, hướng dẫn giải các dạng bài tập điển hình và chọn lọc các bài tập tự luyện từ các đề tuyển sinh vào lớp 10 môn Toán, có đáp số và hướng dẫn giải. Khái quát nội dung tài liệu 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán – Lê Văn Hưng: CHỦ ĐỀ I : RÚT GỌN BIỂU THỨC VÀ BÀI TOÁN PHỤ. + Dạng 1. Tính giá trị cuả biểu thức A khi x = x0. + Dạng 2. Tìm giá trị của biến khi biết giá trị của biểu thức. + Dạng 3. So sánh biểu thức A với k hoặc. + Dạng 4. Tìm giá trị nguyên để của x để biểu A có giá trị nguyên. + Dạng 5. Tìm giá trị của x để biểu A có giá trị nguyên. + Dạng 6. Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức A. + Dạng 7. Chứng minh biểu thức A luôn luôn âm hoặc luôn luôn dương. + Dạng 8. Chứng minh biểu thức thỏa mãn với điều kiện nào đó. CHỦ ĐỀ II : HỆ PHƯƠNG TRÌNH. Phần I : Giải và biện luận hệ phương trình. + Dạng 1. Giải hệ phương trình cơ bản. + Dạng 2. Giải hệ phương trình không cơ bản. + Dạng 3. Giải hệ phương trình chứa tham tham số. Phần II : Giải bài toán bằng cách lập hệ phương trình. + Dạng 1. Tìm các chữ số tự nhiên. + Dạng 2. Tính tuổi. + Dạng 3. Hình học. + Dạng 4. Toán liên quan đến tỉ số phần trăm. + Dạng 5. Toán làm chung công việc. + Dạng 6. Bài toán liên quan đến sự thay đổi của tích. + Dạng 7. Toán chuyển động. [ads] CHỦ ĐỀ III : PHƯƠNG TRÌNH BẬC HAI – ĐƯỜNG THẲNG – PARABOL. + Dạng 1. Tính giá trị của hàm số y = f(x) = ax2 tại x = x0. + Dạng 2. Xác định tính đồng biến, nghịch biến của hàm số. + Dạng 3. Vẽ đồ thị hàm số y = f(x) = ax2 (a khác 0). + Dạng 4. Xác định tham số. + Dạng 5. Tìm tọa độ giao điểm của parabol và đường thẳng. + Dạng 6. Xác định hệ số a, b, c của phương trình bậc hai. + Dạng 7. Giải phương trình bậc hai. + Dạng 8. Giải và biện luận phương trình bậc hai. + Dạng 9. Giải hệ phương trình hai ẩn gồm một ẩn. + Dạng 10. Giải hệ phương trình có hai ẩn số. + Dạng 11. Hệ thức Vi-ét và ứng dụng. + Dạng 12. Giải và biện luận phương trình trùng phương. + Dạng 13. Giải một số phương trình, hệ phương trình. + Dạng 14. Giải bài toán bằng cách lập phương trình. + Dạng 15. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc. + Dạng 16. Tìm điểm cố định của đường thẳng phụ thuộc tham số. + Dạng 17. Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến. CHỦ ĐỀ IV : CÁC BÀI TOÁN LIÊN QUAN ĐẾN ĐƯỜNG TRÒN. + Dạng 1. Bài toán liên quan đến chứng minh. + Dạng 2. Bài toán liên quan đến tính toán. + Dạng 3. Bài toán liên quan đến quỹ tích. + Dạng 4. Bài toán liên quan đến dựng hình. + Dạng 5. Bài toán liên quan đến cực trị hình học. CHỦ ĐỀ V : BÀI TOÁN MIN – MAX, GIẢI PHƯƠNG TRÌNH CHỨA CĂN THỨC. Phần I . Bài toán Min – Max. + Dạng 1. Kĩ thuật chọn điểm rơi. + Dạng 2. Kĩ thuật khai thác giả thiết. + Dạng 3. Kĩ thuật Cô – si ngược dấu. Phần II . Giải phương trình chứa căn thức. + Dạng 1. Sử dụng biến đổi đại số. + Dạng 2. Đặt ẩn phụ. + Dạng 3. Đánh giá.

Nguồn: toanmath.com

Đọc Sách

7 chuyên đề luyện thi vào lớp 10 môn Toán - Diệp Tuân
Tài liệu gồm 185 trang, được biên soạn bởi thầy giáo Diệp Tuân, tuyển tập 7 chuyên đề luyện thi vào lớp 10 môn Toán. Chuyên đề 1. Căn bậc hai và căn bậc ba. Chuyên đề 2. Hàm số bậc nhất và hàm số bậc hai. Chuyên đề 3. Phương trình và hệ phương trình. Chuyên đề 4. Phương trình chứa tham số m. Chuyên đề 5. Giải toán bằng cách lập phương trình và hệ phương trình.
Phân dạng các bài toán trong đề tuyển sinh lớp 10 môn Toán (2023 - 2024)
Tài liệu gồm 236 trang, được biên soạn bởi quý thầy, cô giáo nhóm Word – Giải – Tách Chuyên Đề Vào 10 Môn Toán, phân dạng và hướng dẫn giải chi tiết các bài toán trong các đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024. Chuyên đề 1. Căn thức và các bài toán liên quan. Chuyên đề 2. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Chuyên đề 3. Hàm số. Chuyên đề 4. Hệ phương trình. Chuyên đề 5. Phương trình. Chuyên đề 6. Hình học. Chuyên đề 7. Bất đẳng thức. Chuyên đề 8. Giá trị của biểu thức. Chuyên đề 9. Số học.
Hệ thống các khái niệm cơ bản và định lý hình học THCS (hình học phẳng)
Tài liệu gồm 56 trang, hệ thống các khái niệm cơ bản và định lý hình học THCS (hình học phẳng). ĐẶC ĐIỂM CHUNG CỦA BỘ MÔN HÌNH HỌC: Kiến thức về bộ môn toán nói chung, bộ môn hình học nói riêng được xây dựng theo một hệ thống chặt chẽ: Từ Tiên đề đến Định nghĩa các Khái niệm – Định lý – và Hệ quả. Đối với những bài toán thông thường, học sinh chỉ cần vận dụng một vài khái niệm, định lý, hệ quả để giải. Đối với những bài toán khó, để xác định hướng giải (cũng như để giải được) học sinh cần nắm được không những hệ thống kiến thức (lý thuyết) mà còn cần nắm chắc cả hệ thống bài tập, để vận dụng chúng vào giải bài tập mới. Do đó để giải tốt các bài toán hình học, học sinh cần: a/ Nắm chắc hệ thống kiến thức về lý thuyết. b/ Nắm chắc hệ thống bài tập. c/ Biết cách khai thác giả thiết nhằm đọc hết những thông tin tiềm ẩn trong giả thiết, nắm chắc, nắm đầy đủ cái ta có, suy ra cái ta sẽ có (càng nhiều càng tốt). Từ đó giúp ta xây dựng hướng giải, vẽ được đường phụ cũng như giúp ta có thể giải được bài toán bằng nhiều cách. Nội dung ở cột Hình vẽ, khai thác ở bảng tổng hợp dưới đây nhằm giúp học sinh tập dượt suy ra cái ta sẽ có ở nội dung Nếu có ….. Ta có ….. d/ Biết cách tìm hiểu câu hỏi (kết luận): + Nắm chắc các phương pháp chứng minh từng dạng toán (trong đó cần hết sức lưu ý định nghĩa các khái niệm). + Biết đưa bài toán về trường hợp tương tự. + Nắm được ý nghĩa của câu hỏi để có thể chuyển sang dạng tương đương. Ví dụ để chứng minh biểu thức M không phụ thuộc vị trí của cát tuyến d khi d quay quanh điểm O ta cần chứng minh M = hằng số. Tài liệu này tổng hợp, hệ thống các khái niệm và định lý (trong phần hình học phẳng) trong chương trình hình học trung học cơ sở bằng cách tổng hợp tất cả các khái niệm, định lý (liên quan đến từng khái niệm) về một mối. Trên cơ sở đó giúp học sinh ôn tập một cách tổng hợp các khái niệm, định lý để vận dụng vào giải toán. Đề nghị các trường triển khai đến học sinh, giáo viên để nghiên cứu vận dụng. Các khái niệm, định lý trong tài liệu này được chia ra các phần chính như sau: 1/ ĐƯỜNG THẲNG – ĐOẠN THẲNG – TIA – GÓC – QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. 2/ TAM GIÁC – TAM GIÁC CÂN – TAM GIÁC VUÔNG – TAM GIÁC VUÔNG CÂN – TAM GIÁC ĐỀU. 3/ TỨ GIÁC – HÌNH THANG – HÌNH BÌNH HÀNH – HÌNH CHỮ NHẬT – HÌNH THOI – HÌNH VUÔNG – ĐA GIÁC. 4/ ĐƯỜNG TRÒN. Nội dung tài liệu được thiết kế theo dạng bảng gồm 4 cột: + Khái niệm: Nêu tên khái niệm. Trong từng khái niệm có ghi chú khái niệm đó được học ở khối lớp nào trong chương trình hình học THCS để học sinh vận dụng phù hợp với khối lớp đang học. + Nội dung: Nêu định nghĩa khái niệm, các định lý, nhận xét liên quan đến khái niệm đó. + Hình vẽ – Khai thác: – Hình vẽ minh họa. – Giúp học sinh tìm tòi, khai thác dưới dạng Nếu có ….. thì ta có 1) – 2) – 3) … để tăng thêm dữ liệu phục vụ cho giải bài toán liên quan đến khái niệm đó. + Cách chứng minh: Nếu các cách chứng minh hình học. VD chứng minh hai đường thẳng song song. Đây chỉ là tài liệu tham khảo, rất mong sự đóng góp ý kiến của đội ngũ giáo viên để Phòng Giáo dục có thể điều chỉnh, hoàn thiện tài liệu này.