Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2018 2019 trường THPT Lý Thánh Tông Hà Nội

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2018 2019 trường THPT Lý Thánh Tông Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK2 Toán lớp 10 năm 2018 – 2019 trường THPT Lý Thánh Tông – Hà Nội, đề thi được biên soạn theo dạng đề kết hợp giữa tự luận và trắc nghiệm khách quan, vừa kiểm tra được khả năng tư duy logic, trình bày bài giải của học sinh, đồng thời phù hợp với xu hướng thi trắc nghiệm Toán hiện nay. Đề thi có mã đề 001 gồm 3 trang, phần tự luận gồm 4 câu, chiếm 6 điểm, phần trắc nghiệm gồm 20 câu, chiếm 4 điểm, tổng thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Ma trận đề thi HK2 Toán lớp 10 năm 2018 – 2019 trường THPT Lý Thánh Tông – Hà Nội: Bất phương trình và hệ bất phương trình một ẩn: + Nhận biết: Điều kiện xác định của BPT có chứa mẫu, Giải bất phương trình đơn giản. + Thông hiểu: Giải BPT đơn giản có chứa căn thức, BPT có chứa căn thức, trị tuyệt đối. + Vận dụng: Giải bất phương trình bậc nhất một ẩn, hệ bất phương trình bậc nhất một ẩn. Dấu của nhị thức bậc nhất: + Nhận biết: Nhị thức bậc nhất. + Thông hiểu: Dấu của nhị thức, Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương của các nhị thức bậc nhất. + Vận dụng: Bảng dấu, tìm nhị thức đúng. [ads] Dấu của tam thức bậc hai: + Nhận biết: Điều kiện để hàm số là một tam thức bậc hai. + Thông hiểu: Dấu của tam thức, Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương. + Vận dụng: Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương, Tìm m để phương trình có nghiệm hoặc vô nghiệm, thỏa mãn điều kiện cho trước, tam thức luôn dương hoặc luôn âm (với delta ở dạng bậc hai). Cung và góc lượng giác: + Nhận biết: Đổi độ sang rađian và ngược lại, Chuyển độ sang rađian và ngược lại, Tìm độ dài cung trên đường tròn. + Thông hiểu: Tìm độ dài cung trên đường tròn. Giá trị lượng giác của một cung: + Nhận biết: Kiểm tra công thức đúng – sai, Kiểm tra công thức lượng giác cơ bản, Kiểm tra công thức GTLG của các cung có liên quan đặc biệt. + Thông hiểu: Xác định dấu của GTLG, Tính giá trị lượng giác còn lại. + Vận dụng: GTLN và GTNN của một biểu thức, Tìm giá trị lượng giác của góc α, Chứng minh đẳng thức. Công thức lượng giác: + Nhận biết: Kiểm tra công thức. + Thông hiểu: Tính giá trị của biểu thức lượng giác, Tính giá trị của biểu thức lượng giác. + Vận dụng: Rút gọn biểu thức, Chứng minh đẳng thức lượng giác. Các hệ thức lượng trong tam giác và giải tam giác: + Nhận biết: Mệnh đề đúng – sai (định lý sin, định lý côsin), Tính diện tích tam giác sử dụng công thức Hê-rông. + Thông hiểu: Tìm bán kính đường tròn nội tiếp (ngoại tiếp). + Vận dụng: Tính số đo góc, bài toán thực tế. Phương trình đường thẳng: + Nhận biết: Xác định vectơ chỉ phương, vectơ pháp tuyến, Xác định điểm thuộc đường thẳng, Viết phương trình đường thẳng biết đi qua 1 điểm, biết VTCP hoặc VTPT. + Thông hiểu: Tính khoảng cách từ 1 điểm đến 1 đường thẳng, Viết phương trình đường thẳng đi qua 2 điểm. + Vận dụng: Viết phương trình đường thẳng, Viết phương trình đường thẳng thỏa mãn điều kiện cho trước. Phương trình đường tròn: + Nhận biết: Xác định tọa độ tâm và bán kính đường tròn, Viết phương trình đường tròn biết tâm và bán kính. + Thông hiểu: Phương trình đường tròn đường kính AB. + Vận dụng: Điều kiện để một phương trình trở thành phương trình đường tròn, Viết phương trình đường tròn, Viết phương trình đường tròn thỏa mãn điều kiện cho trước. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có các đỉnh. a) Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác ABC và d song song với đường thẳng AB . b) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn. Viết phương trình tiếp tuyến của đường tròn biết rằng đường thẳng vuông góc với đường thẳng. + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình chính tắc của elip E biết E đi qua điểm A và có độ dài trục nhỏ bằng tiêu cự.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2), B(5;2), C(1;−3). Viết phương trình đường cao AH của tam giác ABC. + Trong mặt phẳng Oxy, viết phương trình đường tròn (C) có đường kính MN với M(−3;2); N(1;−2). + Trong mặt phẳng tọa độ Oxy, cho elip 2 2 1 16 9 x y E. Xác định tọa độ các đỉnh, tiêu điểm; độ dài trục lớn; độ dài trục nhỏ và tiêu cự của Elip.
Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10
Tài liệu gồm 49 trang được biên soạn bởi thầy Lương Tuấn Đức (Facebook: Giang Sơn) tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10, giúp học sinh ôn tập để chuẩn bị cho kỳ thi HK2 Toán 10 tại trường. Các đề thi được biên soạn theo dạng đề trắc nghiệm, mỗi đề gồm 50 câu, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn tài liệu tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10: + Tính tổng S bao gồm tất cả các giá trị tham số m để đường thẳng x + my – 2m + 3 = 0 cắt đường tròn (C): x^2 + y^2 + 4x + 4y + 6 = 0 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB lớn nhất, trong đó I là tâm đường tròn (C). [ads] + Một người thợ xây cần xây một bể chứa 10m3 nước, có dạng hình hộp chữ nhật với đáy là hình vuông và không có nắp. Hỏi chiều dài, chiều rộng và chiều cao của lòng bể bằng bao nhiêu để số viên gạch dùng để xây bể là ít nhất, biết thành bể và đáy bể đều được xây bằng gạch, độ dày của thành bể và đáy là như nhau, các viên gạch có kích thước như nhau và số viên gạch trên một đơn vị diện tích bằng nhau. + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại B có BC = 2AB. Điểm M (2;– 2) là trung điểm của cạnh AC. Gọi N là điểm trên cạnh BC sao cho BC = 4BN. Điểm H(4/5;8/5) là giao điểm của AN và BM. Biết N thuộc đường thẳng x + 2y = 6, tính tổng các hoành độ của C và A khi hai đỉnh đó có tọa độ nguyên.
Đề thi học kỳ 2 Toán 10 năm 2018 - 2019 trường Lê Quý Đôn - Quảng Ninh
Ngày 11 tháng 05 năm 2019, trường THPT Lê Quý Đôn, tỉnh Quảng Ninh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán dành cho học sinh khối lớp 10. Đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường Lê Quý Đôn – Quảng Ninh có mã đề 101 được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận theo thang điểm 6:4, phần trắc nghiệm gồm 24 câu, phần tự luận gồm 3 câu, thời gian học sinh làm bài là 75 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường Lê Quý Đôn – Quảng Ninh : + Tập nghiệm của bất phương trình 3x – 2y + 1 < 0 là? A. Nửa mặt phẳng chứa gốc tọa độ, bờ là đường thẳng 3x – 2y + 1 = 0 (không bao gồm đường thẳng). B. Nửa mặt phẳng chứa gốc tọa độ, bờ là đường thẳng 3x – 2y + 1 = 0 (bao gồm đường thẳng). C. Nửa mặt phẳng không chứa gốc tọa độ, bờ là đường thẳng 3x – 2y + 1 = 0 (bao gồm đường thẳng). D. Nửa mặt phẳng không chứa gốc tọa độ, bờ là đường thẳng 3x – 2y + 1 = 0 (không bao gồm đường thẳng). [ads] + Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc DA1C1 = 49° và DB1C1 = 35°. Chiều cao CD của tháp là? (làm tròn đến hàng phần trăm). + Đường tròn (C) có tâm I(−1;2) và cắt đường thẳng d: 3x – y – 15 = 0 theo một dây cung có độ dài bằng 6. Tìm phương trình đường tròn (C).