Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 2023 sở GDĐT Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm (20 câu – 06 điểm) kết hợp 70% tự luận (04 câu – 14 điểm); thời gian làm bài: 120 phút, không kể thời gian giao đề; kỳ thi được diễn ra vào ngày 04 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Bắc Giang : + Cho đường tròn tâm O bán kính R có dây cung AB = 6. Biết o AOB 120 (như hình vẽ). Diện tích S của phần hình tròn giới hạn bởi cung nhỏ AB và dây cung AB bằng? + Cho hai đường tròn (O; R) và (O’; R’) (với R > R’) cắt nhau tại hai điểm phân biệt A và B. Đường thẳng d thay đổi qua A cắt hai đường tròn (O; R) và (O’; R’) lần lượt tại các điểm M, N (M, N khác A) và A thuộc đoạn MN. Các tiếp tuyến với đường tròn (O; R) tại M và đường tròn (O; R’) tại N cắt nhau tại K. 1. Chứng minh tứ giác MBNK là tứ giác nội tiếp. 2. Gọi P, Q, H tương ứng là hình chiếu vuông góc của điểm B lên các đường thẳng KM, KN và MN. Chứng minh rằng ba điểm P, H, Q thẳng hàng và đường thẳng PQ luôn tiếp xúc với một đường tròn cố định. 3. Chứng minh rằng PH = QH khi các đường phân giác trong của góc MKN và MBN cắt nhau tại một điểm nằm trên đường thẳng MN. + Trong mặt phẳng tọa độ Oxy, gọi M x y là hình chiếu vuông góc của điểm O lên đường thẳng d: y mx m 2 (với m là tham số). Khi độ dài đoạn thẳng OM đạt giá trị lớn nhất tính P x 2y.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Đắk RLấp - Đắk Nông
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi cấp huyện môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Đắk R’Lấp, tỉnh Đắk Nông; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Đắk R’Lấp – Đắk Nông : + Cho biểu thức. a) Rút gọn biểu thức A. b) Tính giá trị của A khi x = 17 – 122. c) So sánh A với A. + Rút gọn biểu thức: B. + Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB, HF vuông góc AC. a) Chứng minh AE.AB = AF.AC. b) Chứng minh BC = AB.cosB + AC.cosC. c) Chứng minh AH3 = BE.BC.CF. d) Cho BC cố định. Tìm điều kiện của tam giác ABC để diện tích tứ giác AEHF lớn nhất.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hương Sơn - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hương Sơn, tỉnh Hà Tĩnh; đề thi gồm hai phần: phần ghi kết quả và phần tự luận, thời gian làm bài 120 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hương Sơn – Hà Tĩnh : + Bác Hùng đi xe máy, trong tháng 1 hết 20 lít xăng, tháng 2 hết 15 lít xăng, cả hai tháng hết 740 000 đồng tiền xăng. Biết rằng giá xăng tháng 2 giảm hơn giá xăng tháng 1 là 2 000 đồng/lít. Tính giá của 1 lít xăng tháng 1. + Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Các đường phân giác BD, CE của tam giác ABC cắt nhau tại I. Tính diện tích tam giác IBC. + Cho hình bình hành ABCD (A > 90°) có đường chéo AC vuông góc với BC. Vẽ AK vuông góc với CD (K thuộc CD) cắt BC tại E, gọi H là hình chiếu của C trên AB. a) Chứng minh AD BH AB AD và AC3 = BE.BH.EK. b) Tính diện tích tam giác DHE, biết góc B = 60° và cạnh AB = 6cm.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Hà Huy Tập - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS Hà Huy Tập, thành phố Vinh, tỉnh Nghệ An; đề gồm 01 trang với 04 câu tự luận, thời gian làm bài 150 phút.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Phú Xuyên - Hà Nội (Vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội (Vòng 2). Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phú Xuyên – Hà Nội (Vòng 2) : + Tìm số nguyên tố p sao cho 2p + 1 bằng lập phương của một số tự nhiên. + Cho nửa đường tròn tâm O đường kính AB. Gọi C là một điểm nằm trên nữa đường tròn (O) (C khác A, C khác B). Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C, I là trung điểm của CH, J là trung điểm của DH. a) Chứng minh CH.HI = HB.CJ b) Gọi E là giao điểm của HD và BI. Chứng minh HE.HD = HC2. c) Xác định vị trí của điểm C trên nửa đường tròn (O) để AH + CH đạt giá trị lớn nhất. + Trên bảng, người ta viết các số tự nhiên liên tiếp từ 1 đến 100 sau đó thực hiện trò chơi như sau: Mỗi lần xóa hai số a, b bất kỳ trên bảng và viết một số mới bằng a + b – 2 lên bảng. Việc làm này thực hiện liên tục, hỏi sau 99 bước số cuối cùng còn lại trên bảng là bao nhiêu? Tại sao?