Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 9 năm học 2019 - 2020 phòng GDĐT Tây Hồ - Hà Nội

Sáng thứ Tư ngày 03 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 9 năm học 2019 – 2020 phòng GD&ĐT Tây Hồ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 2 Toán 9 năm học 2019 – 2020 phòng GD&ĐT Tây Hồ – Hà Nội : + Giải bài toán bằng cách phương trình hoặc hệ phương trình: Một xe ô tô con và một xe ô tô tải khởi hành cùng một lúc đi từ A đến B. Vận tốc của xe ô tô con lớn hơn vận tốc của xe ô tô tải là 10km/h nên xe ô tô con đến B sớm hơn xe ô tô tải là 30 phút. Tính vận tốc của mỗi xe biết quãng đường AB dài 100km. [ads] + Bài toán thực tế: Một cửa hàng phục vụ hai loại bánh pizza có dạng hình trụ, độ dày giống nhau nhưng khác nhau về kích thước. Loại nhỏ có đường kính 30cm giá 60000 đồng, loại lớn có đường kính 40cm giá 80000 đồng. Vậy mua cái nào lợi hơn? Vì sao? + Cho parabol (P): y = x^2 và đường thẳng (d): y = mx + 2. a) Với m = 1. Tìm toạ độ các giao điểm của (P) và (d). b) Tìm các giá trị của m để d cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho x1 – 2×2 = 5.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình
Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 môn Toán lớp 9 năm học 2016 - 2017 của sở GD và ĐT Thái Bình bao gồm 5 bài toán tự luận, mỗi bài toán đều có lời giải chi tiết. Một trong những bài toán được trích dẫn trong đề là: + Cho nửa đường tròn có đường kính BC, A là điểm thuộc nửa đường tròn sao cho AB < AC (A khác B). Trên dây cung AC lấy điểm E khác A và C; gọi D, H là hình chiếu vuông góc của A lên BC và BE. 1. Chứng minh hai góc BAD và BHD bằng nhau. 2. Chứng minh BH.CE = BC.DH. 3. Gọi K là giao điểm của DH và AC, phân giác góc CKD cắt HE, CD tại M và N; phân giác góc CBE cắt DH, CE tại P và Q. Chứng minh tam giác KPQ cân và tứ giác MPNQ là hình thoi. Đề thi này đòi hỏi kiến thức và kỹ năng phân tích, suy luận của học sinh. Bằng cách giải quyết các bài toán này, học sinh sẽ phát triển khả năng tư duy logic và sáng tạo trong việc giải quyết vấn đề. Chắc chắn rằng việc tham gia vào việc giải các bài toán trong đề thi này sẽ giúp học sinh rèn luyện kỹ năng toán học một cách hiệu quả.