Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán lớp 7 năm 2022 – 2023 Đề học sinh giỏi môn Toán lớp 7 năm 2022 – 2023 Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh. Đề thi sẽ được tổ chức vào ngày 22 tháng 02 năm 2023, với thời gian làm bài 120 phút, đề thi hình thức 100% tự luận. Trong đề thi sẽ có nhiều dạng bài tập khác nhau, đi từ dễ đến khó, để đánh giá năng lực và kiến thức của các em học sinh. Một trong số đó là bài toán về tam giác ABC và các điểm I, D, E, H, với nhiều yếu tố cần chứng minh và suy luận logic. Bài toán còn yêu cầu thí sinh chọn một trong hai câu hỏi phụ, với bài toán cộng trừ. Đề thi được thiết kế để thách thức tư duy và kỹ năng giải quyết vấn đề của các học sinh, giúp họ rèn luyện khả năng tự ôn tập và phát triển bản thân. Hy vọng rằng đề thi sẽ mang lại cơ hội cho các em thể hiện tài năng và đạt kết quả cao trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 cụm Trung học Cơ sở phòng Giáo dục và Đào tạo UBND huyện Vĩnh Lộc, tỉnh Thanh Hóa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2023. Trích dẫn đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp nhận nhiều hơn dự định 12 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. Chứng minh rằng: 1. Tam giác ABE bằng tam giác ADC 2. DE = BE 3. 0 EIC 60 và IA là tia phân giác của DIE. + Cho f(x) là đa thức hệ số nguyên và thoả mãn f(0) = 0 và f(1) = 2. Chứng minh rằng f(7) không thể là số chính phương. Cho hai số nguyên tố khác nhau p và q. Chứng minh rằng: 1 1 1 q p p q chia hết cho p.q.
Đề kiểm định HSG Toán 7 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2023. Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N và cắt tia AB tại E, cắt tia AC tại F. a. Chứng minh rằng ANE = ANF. b. Chứng minh rằng AE = (AB + AC)/2. + Cho ABC có ABC = 45°, ACB = 120°. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB. Tính ADB. + Cho a, b, c là các số thực thỏa mãn a + b + c ≤ 2. Tìm giá trị nhỏ nhất của biểu thức P = 2023ca – ab – bc.
Đề kiểm định HSG Toán 7 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm định chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An. Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Tìm giá trị nhỏ nhất của biểu thức A = |2x − 4| + |2x − 6| + |2x − 8|. + Ba hộp đựng trứng gà có tất cả 710 quả. Sau khi bán 1/5 số trứng ở hộp thứ nhất, 1/6 số trứng ở hộp thứ hai và 1/11 số trứng ở hộp thứ ba thì số trứng còn lại ở ba hộp bằng nhau. Hỏi lúc đầu mỗi hộp đựng bao nhiêu quả trứng? + Cho tam giác nhọn ABC có các trung tuyến BD và CE cắt nhau tại G. Trên tia đối của tia DB lấy điểm M sao cho DB = DM. Trên tia đối của tia EC lấy điểm N sao cho EN = EC. Chứng minh rằng: a) ADM = CDB và ba điểm M, A, N thẳng hàng. b) BM + CN > 3BC. c) Các đường thẳng AG, NB, MC đồng quy.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Quảng Ninh - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Giả sử x, y, z là độ dài 3 cạnh của một tam giác có chu vi bằng 1. Chứng minh. + Cho hai đa thức: M(x) = 2×3 − x2 − 3x + 1 và N(x) = -x3 + x2 – x + 2. Tìm một nghiệm của đa thức P(x) = M(x) + N(x). + Cho tam giác ABC (AB < AC), có ABC = 60°. Hai đường phân giác AD và CE của ABC cắt nhau ở I. a) Chứng minh BC > AC. b) Tính AIC. c) Chứng minh ADE là tam giác cân.