Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập hàm số và đồ thị Toán 10 Cánh Diều

Tài liệu gồm 352 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển tập các dạng bài tập tự luận và trắc nghiệm chuyên đề hàm số và đồ thị trong chương trình Toán 10 Cánh Diều, có đáp án và lời giải chi tiết. BÀI 1 . HÀM SỐ VÀ ĐỒ THỊ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Tập xác định của hàm số. + Dạng 2. Sự biến thiên của hàm số. + Dạng 3. Tập giá trị, giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 4. Một số bài toán liên quan đến đồ thị của hàm số. + Dạng 5. Xác định biểu thức của hàm số. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tập xác định của hàm số. + Dạng 2. Sự biến thiên của hàm số. + Dạng 3. Tập giá trị, giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 4. Một số bài toán liên quan đến đồ thị của hàm số. + Dạng 5. Xác định biểu thức của hàm số. BÀI 2 . HÀM SỐ BẬC HAI. ĐỒ THỊ HÀM SỐ BẬC HAI VÀ ỨNG DỤNG. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Khảo sát sự biến thiên và vẽ đồ thị. + Dạng 2. Xác định hàm số bậc hai thỏa mãn điều kiện cho trước. + Dạng 3. Sự tương giao giữa parabol với đồ thị các hàm số khác. + Dạng 4. Một số câu hỏi thực tế liên quan đến hàm số bậc hai. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Khảo sát sự biến thiên và vẽ đồ thị. + Dạng 2. Xác định hàm số bậc hai thỏa mãn điều kiện cho trước. + Dạng 3. Sự tương giao giữa parabol với đồ thị các hàm số khác. + Dạng 4. Một số câu hỏi thực tế liên quan đến hàm số bậc hai. BÀI 3 . DẤU CỦA TAM THỨC BẬC HAI. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng. Dấu của tam thức bậc hai. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng. Dấu của tam thức bậc hai. BÀI 4 . BẤT PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Bất phương trình bậc hai. + Dạng 2. Bài toán tham số liên quan đến tam thức bậc hai. + Dạng 3. Ứng dụng của bất phương trình bậc hai một ẩn. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Bất phương trình bậc hai. + Dạng 2. Bài toán tham số liên quan đến tam thức bậc hai. + Dạng 3. Ứng dụng của bất phương trình bậc hai một ẩn. BÀI 5 . HAI DẠNG PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. PHẦN C. BÀI TẬP TRẮC NGHIỆM.

Nguồn: toanmath.com

Đọc Sách

Bài tập tự luận chuyên đề vectơ - Trần Đình Thiên
Tài liệu gồm 18 trang tóm tắt lý thuyết, phân loại các dạng toán và tổng hợp các bài toán tự luận chủ đề vectơ, tích vô hướng của hai vectơ và ứng dụng. Chương 1 . Vectơ I. Vectơ + Vấn đề 1. Khái niệm vectơ + Vấn đề 2. Chứng minh đẳng thức vectơ – phân tích vectơ Để chứng minh một đẳng thức vectơ hoặc phân tích một vectơ theo hai vectơ không cùng phương, ta thường sử dụng: – Qui tắc ba điểm để phân tích các vectơ – Các hệ thức thường dùng như: Hệ thức trung điểm, hệ thức trọng tâm tam giác – Tính chất của các hình Vấn đề 3. Xác định một điểm thoả mãn đẳng thức vectơ Để xác định một điểm M ta cần phải chỉ rõ vị trí của điểm đó đối với hình vẽ. Thông thường ta biến đổi đẳng thức vectơ đã cho về dạng vt OM = vt a, trong đó O và vt a đã được xác định. Ta thường sử dụng các tính chất về: – Điểm chia đoạn thẳng theo tỉ số k – Hình bình hành – Trung điểm của đoạn thẳng [ads] Vấn đề 4. Chứng minh ba điểm thẳng hàng – hai điểm trùng nhau Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh ba điểm đó thoả mãn đẳng thức vt AB = k.vt AC, với k khác 0 Để chứng minh hai điểm M, N trùng nhau ta chứng minh chúng thoả mãn đẳng thức vt OM = vt ON, với O là một điểm nào đó hoặc vt MN = vt 0 Vấn đề 5. Tập hợp điểm thoả mãn đẳng thức vectơ Để tìm tập hợp điểm M thoả mãn một đẳng thức vectơ ta biến đổi đẳng thức vectơ đó để đưa về các tập hợp điểm cơ bản đã biết. Chẳng hạn: – Tập hợp các điểm cách đều hai đầu mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó – Tập hợp các điểm cách một điểm cố định một khoảng không đổi đường tròn có tâm là điểm cố định và bán kính là khoảng không đổi II. Toạ độ Vấn đề 1. Toạ độ trên trục Vấn đề 2. Toạ độ trên hệ trục Chương 2 . Tích vô hướng của hai vectơ Vấn đề 1. Tính tích vô hướng của 2 vectơ Vấn đề 2. Chứng minh một đẳng thức vectơ có liên quan đến tích vô hướng hay đẳng thức các độ dài Phương pháp: – Ta sử dụng các phép toán về vectơ và các tính chất của tích vô hướng – Về độ dài ta chú ý AB^2 = vt AB^2 Vấn đề 3. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3) xác định hình dạng của tam giác ABC Vấn đề 4. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3) xác định trọng tâm G, trực tâm H và tâm I của đường tròn ngoại tiếp tam giác ABC Vấn đề 5. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3) xác định tâm J của đường tròn nội tiếp tam giác ABC Vấn đề 6. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3) gọi A’ là chân đường vuông góc kẻ từ A lên BC .Tìm A’ Vấn đề 7. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3), tính cosA
128 bài tập trắc nghiệm tổng ôn phần vector - Hứa Lâm Phong
Tài liệu gồm 12 trang tuyển tập các bài toán trắc nghiệm thuộc chuyên đề vectơ. Các bài toán được phân thành các vấn đề: + Vấn đề 1: Nhận biết và xác định vectơ, hai vectơ cùng phương, hai vectơ bằng nhau + Vấn đề 2: Dựng và tính tổng – hiệu của hai vectơ + Vấn đề 3: Tích vectơ với một số thực + Vấn đề 4: Tính độ dài của vectơ theo một cạnh cho trước + Vấn đề 5: Biểu thị một vectơ theo hai vectơ không cùng phương + Vấn đề 6: Tìm quỹ tích của một điểm thỏa mãn tính chất cho trước [ads]
Bài tập trắc nghiệm và tự luận chuyên đề vector - Trần Quang Thạnh
Tài liệu gồm 26 trang tuyển tập các bài toán trắc nghiệm khách quan và bài tập tự luận thuộc chuyên đề vectơ. Nội dung gồm các bài: Bài 1. Vectơ + Chủ đề I. Xác định vectơ + Chủ đề II. Hai vectơ cùng phương – hai vectơ bằng nhau Bài 2. Tổng và hiệu hai vectơ + Chủ đề I. Tính tổng các vectơ – chứng minh đẳng thức vectơ + Chủ đề II. Tính độ dài vectơ + Chủ đề III. Quỹ tích và xác định điểm thỏa mãn đẳng thức vectơ [ads] Bài 3. Tích một số với một vectơ + Chủ đề I. Tính độ dài vectơ + Chủ đề II. Phân tích vectơ và chứng minh các điểm thẳng hàng + Chủ đề III. Chứng minh đẳng thức vectơ + Chủ đề IV. Quỹ tích và xác định điểm thỏa mãn đẳng thức vectơ Bài 4. Hệ trục tọa độ + Chủ đề I. Trục tọa độ + Chủ đề II. Tọa độ vectơ + Chủ đề III. Tọa độ điểm Ôn tập chương I
Phân dạng và bài tập trắc nghiệm chuyên đề vector - Gia Quyền, Phương Chi
Tài liệu gồm 29 trang bao gồm lý thuyết, phân dạng chi tiết và bài tập trắc nghiệm về chủ đề vector. Nội dung tài liệu phân theo 4 vấn đề: + Vấn đề 1. Các định nghĩa của vectơ + Vấn đề 2. Tổng – hiệu của hai vectơ + Vấn đề 3. Tích của vectơ với một số + Vấn đề 4. Hệ trục tọa độ [ads]