Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Đà Nẵng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT thành phố Đà Nẵng. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Đà Nẵng : + Một số tự nhiên có ba chữ số có tổng chữ số hàng trăm với chữ số hàng đơn vị bằng 9 và nếu đổi chỗ hai chữ số hàng trăm và hàng đơn vị cho nhau thì được số mới có ba chữ số nhỏ hơn số ban đầu là 99. Tim số đã cho, biết rằng số đó chia hết cho 18. + Cho tam giác ABC nhọn có hai đường cao BD, CE cắt nhau tại H. Gọi F là hình chiếu vuông góc của H trên BC, M là tiếp điểm của EF với đường tròn nội tiếp tam giác DEF, I là giao điểm (khác F) của HF với đường tròn đường kính DF và N là giao điểm của IM với ED. a) Chứng minh rằng ba điểm A, H, F thẳng hàng và BE.BA + CD.CA = BC2. b) Chứng minh rằng hai đường thẳng ED và HN vuông góc với nhau. c) Cho BAC = 60° và bán kính đường tròn (O) ngoại tiếp tam giác ABC bằng R. Gọi K là điểm thay đổi trên cung nhỏ BC của đường tròn (O) và P, Q lần lượt là hình chiếu vuông góc của K trên AB và AC. Khi PQ lớn nhất, hãy tính diện tích của tam giác OPQ theo R. + Trong mặt phẳng toạ độ Oxy (O là gốc toạ độ), cho hình bình hành OABC có điểm A(3;5), điểm C thuộc đường thẳng y = -x và có hoành độ dương. Biết rằng diện tích của hình bình hành OABC bằng 24. Tìm toạ độ điểm B.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết
Tài liệu tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết từ các trường THPT và cơ sở Giáo dục – Đào tạo trên toàn quốc. Các đề thi theo hình thức tự luận, hy vọng bộ đề học sinh giỏi các năm học trước sẽ giúp các em học sinh nắm được cấu trúc đề, nội dung cần ôn tập chuẩn bị cho kỳ thi HSG Toán 9 sắp tới.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 9 - Hồ Khắc Vũ
Tài liệu gồm 114 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 9 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi chọn đội tuyển học sinh giỏi Toán 9 năm học 2017 - 2018 trường THCS Trần Mai Ninh - Thanh Hóa (Vòng 1)
Đề thi chọn đội tuyển học sinh giỏi (HSG) Toán 9 năm học 2017 – 2018 trường THCS Trần Mai Ninh – Thanh Hóa (Vòng thi thứ nhất) gồm 5 bài toán tự luận. Trích dẫn đề thi : + Cho hình vuông ABCD, có M và N theo thứ tự là trung điểm của các cạnh AB và BC, nối DN cắt CM tại I. a. Chứng minh: CI.CM = CN.CB b. Chứng minh: DI = 4IN c. Kẻ tia AH vuông góc với DN tại H và tia AH cắt CD tại P. Cho AB = a Tính diện tích tứ giác HICP [ads] + Cho a^2 + b^2 = c^2 + d^2 = 2017 và ac + bd = 0. Tính giá trị biểu thức S = ab + cd. + Cho a, b là các số nguyên dương sao cho: a + 1 và b + 2007 chia hết cho 6. Chứng minh: 4^a + a + b chia hết cho 6. + Cho x, y là các số thực dương thỏa mãn: x + y = (x – y)√xy. Tìm giá trị nhỏ nhất của P = x + y.
Đề thi học sinh giỏi năm học 2017 - 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải - Thái Bình
Đề thi học sinh giỏi (HSG) năm học 2017 – 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải – Thái Bình gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi : + Tìm các số a, b sao cho đa thức f(x) = x^4 + ax^3 + bx – 1 chia hết cho đa thức x^2 – 3x + 2. + Chứng minh rằng : B = 4x(x + y)(x + y + z)(x + z) + y^2.z^2 là một số chính phương với x, y, z là các số nguyên. + Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. [ads] a) Biết AB = 6 cm, HC = 6,4 cm. Tính BC, AC b) Chứng minh: DE^3 = BC.BD.CE c) Đường thẳng kẻ qua B vuông góc với BC cắt HD tại M, đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh M, A, N thẳng hàng d) Chứng minh rằng : BN, CM, DE đồng quy + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + c^x + d (với a, b, c là các số thực). Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị biểu thức A = f(8) – f(-4).