Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải toán 12 khối đa diện và khối tròn xoay - Trần Đức Huyên

Cuốn sách Giải toán 12 khối đa diện và khối tròn xoay được biên soạn bám sát cấu trúc của sách giáo khoa Hình học 12, sách được biên soạn bởi các tác giả Trần Đức Huyên (chủ biên), Nguyễn Duy Hiếu, Phạm Thị Bé Hiền. Chương I . KHỐI ĐA DIỆN. THỂ TÍCH CỦA KHỐI ĐA DIỆN Bài 1. Khái niệm về khối đa diện. + Vấn đề 1. Chứng minh một số tính chất liên quan đến đỉnh, cạnh và mặt của một khối đa diện. + Vấn đề 2. Phân chia và lắp ghép các khối đa diện. Bài 2. Phép đối xứng qua mặt phẳng. Sự bằng nhau của các khối đa diện. + Vấn đề 1. Chứng minh hai hình bằng nhau. + Vấn đề 2. Chứng minh một phép biến hình là phép dời hình. Bài 3. Phép vị tự. Sự đồng dạng của các khối đa diện. Các khối đa diện đều. Bài 4. Thể tích của khối đa diện. [ads] Chương II . MẶT CẦU. MẶT TRỤ. MẶT NÓN Bài 1. Mặt cầu. Khối cầu. + Vấn đề 1. Xác định mặt cầu. + Vấn đề 2. Mặt cầu ngoại tiếp, nội tiếp hình chóp. + Vấn đề 3. Diện tích mặt cầu. Thể tích khối cầu. + Vấn đề 4. Tiếp tuyến của mặt cầu. Bài 2. Mặt trụ. Hình trụ. Khối trụ. + Vấn đề 1. Xác định mặt trụ. + Vấn đề 2. Diện tích xung quanh hình trụ. Thể tích khối trụ. + Vấn đề 3. Thiết diện của hình trụ cắt bởi một mặt phẳng. Bài 3. Mặt nón. Hình nón. Khối nón. + Vấn đề 1. Diện tích xung quanh. Diện tích toàn phần hình nón. Thể tích khối nón. + Vấn đề 2. Hình nón nội tiếp, ngoại tiếp hình chóp. Hình nón nội tiếp, ngoại tiếp mặt cầu. Bài 4. Tổ hợp hình cầu, hình trụ, hình nón.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề thể tích khối đa diện - Nguyễn Văn Thân
Tài liệu gồm 19 trang tóm tắt lý thuyết và tuyển tập các bài toán trắc nghiệm về thể tích khối đa diện. Nội dung tài liệu chia thành các phần: 1. Ôn tập hình học phẳng 2. Ôn tập hình học không gian 11 3. Tính chất của một số hình đặc biệt 4. Thể tích khối đa diện [ads] – Chủ đề 1. Các dạng toán khối chóp + Dạng 1. Hình chóp có cạnh bên vuông góc với đáy + Dạng 2. Hình chóp có một mặt vuông góc với đáy + Dạng 3. Hình chóp có hai mặt vuông góc với đáy + Dạng 4. Hình chóp đều – Chủ đề 2. Thể tích của khối lăng trụ + Dạng 1. Lăng trụ đứng + Dạng 2. Hình lăng trụ xiên – Chủ đề 3. Một số bài tập trắc nghiệm
Chuyên đề thể tích khối lăng trụ - Trần Đình Cư
Tài liệu gồm 34 trang với các dạng toán về thể tích khối lăng trụ: lăng trụ đứng, lăng trụ đều, lăng trụ xiên, các bài tập có đáp án và lời giải chi tiết. THỂ TÍCH KHỐI LĂNG TRỤ 1. Định nghĩa: Cho hai mặt song song (α) và (α’). Trên (α) ta lấy đa giác lồi A1A2 … An, qua các đỉnh này ta dựng các đường thẳng song song cắt (α’) tại A’1, A’2 … A’n. Hình bao gồm hai đa giác A1A2 … An, A’1A’2 … A’n và các hình bình hành A1A2A’2A’1, … được gọi là hình lăng trụ. Nhận xét : + Các mặt bên của hình lăng trụ bằng nhau và song song với nhau. + Các mặt bên là các hình bình hành. + Hai đáy hình lăng trụ là hai đa giác bằng nhau. 2. Hình lăng trụ đứng – hình lăng trụ đều, hình hộp chữ nhật và hình lập phương a. Hình lăng trụ đứng: là hình lăng trụ có cạnh bên vuông góc với đáy. Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ. Lúc đó các mặt bên của hình lăng trụ đứng là các hình chữ nhật. b. Hình lăng trụ đều: là hình lăng trụ đứng có đáy là đa giác đều. Các mặt bên của lăng trụ đều là các hình chữ nhật bằng nhau. Ví dụ: hình lăng trụ tam giác đều, tứ giác đều … thì ta hiểu là hình lăng trụ đều. [ads] c. Hình hộp: Là hình lăng trụ có đáy là hình bình hành. d. Hình hộp đứng: là hình lăng trụ đứng có đáy là hình bình hành. e. Hình hộp chữ nhật: là hình hộp đứng có đáy là hình chữ nhật. f. Hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông được gọi là hình lập phương (hay hình chữ nhật có ba kích thước bằng nhau được gọi là hình lập phương). Nhận xét : + Hình hộp chữ nhật ⇒ hình lăng trụ đứng (Có tất cả các mặt là hình chữ nhật). + Hình lập phương ⇒ hình lăng trụ đều (tất cả các cạnh bằng nhau). + Hình hộp đứng ⇒ hình lăng trụ đứng (mặt bên là hình chữ nhật, mặt đáy là hình bình hành). 3. Thể tích khối lăng trụ Thể tích khôi lăng trụ được tính theo công thức: V = B.h với B là diện tích đáy và h là chiều cao. 4. So sánh khối lăng trụ đứng và khối lăng trụ đều
Tuyển chọn 500 câu trắc nghiệm hình học không gian - Cao Đình Tới
Tài liệu gồm 77 trang tuyển chọn 500 bài tập trắc nghiệm hình học không gian. Mục lục tài liệu: + KIẾN THỨC Công thức tính thể tích các hình Các kiến thức về tam giác Các kiến thức về tứ giác Công thức tính diện tích các hình Hệ thức lượng trong tam giác vuông Hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy Hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy Hình chóp tứ giác đều S.ABCD Hình chóp tam giác đều S.ABCD Hình chóp tam giác đều S.ABCD Hình chóp có mặt bên vuông góc với đáy Hình chóp có 2 mặt phẳng cùng vuông góc với đáy Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp Các loại khối đa diện đều Một số công thức giải nhanh phần thể tích khối chóp [ads] + CÁC DẠNG BÀI TẬP Hình chóp cho trước đường cao Hình chóp có mặt bên vuông góc với đáy Hình chóp đều Tỉ lệ thể tích Hình chóp nâng cao Khối đa diện Hình nón Hình trụ Mặt cầu Lăng trụ + ĐÁP SỐ
75 câu trắc nghiệm khối đa diện - THPT Bình Phục Nhứt, Tiền Giang
Tài liệu gồm 7 trang với 75 bài toán trắc nghiệm thuộc chuyên đề khối đa diện của trường THPT Bình Phục Nhứt – Tiền Giang. Đáp án nằm ở trang cuối tài liệu. Trích dẫn tài liệu : + Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành: A. Một tứ diện đều và bốn hình chóp tam giác giác đều B. Năm tứ diện đều C. Bốn tứ diện đều và một hình chóp tam giác đều D. Năm hình chóp tam giác giác đều, không có tứ diện đều [ads] + Số cạnh của một khối chóp bất kì luôn là: A. Một số chẵn lớn hơn hoặc bằng 4 B. Một số lẻ C. Một số chẵn lớn hơn hoặc bằng 6 D. Một số lẻ lớn hơn hoặc bằng 5 + Kim tự tháp Kê-ốp ở Ai Cập được xây dựng vào khoảng 2500 năm trước Công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 147 m, cạnh đáy dài 230 m. Thế tích của nó là: A. 2592100 m3 B. 2592100 m2 C. 7776300 m3 D. 3888150 m3