Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán cấp THPT năm 2022 - 2023 sở GDĐT An Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2023. Trích dẫn Đề học sinh giỏi Toán cấp THPT năm 2022 – 2023 sở GD&ĐT An Giang : + Cho hình thang ABCD vuông tại A và B cho AD = 2a; AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S bất kỳ. Gọi C’; D’ lần lượt là hình chiếu vuông góc của A trên SC; SD. a) Chứng minh rằng A; B; C’; D’ cùng thuộc một mặt phẳng. b) Chứng minh rằng C’D’ luôn đi qua một điểm cố định khi S thay đổi trên Ax. + Cho tập hợp các số có ba chữ số và tính chất sau: (1) Không có số nào chứa chữ số 0. (2) Tổng các chữ số của mỗi số là 9. (3) Hai số bất kỳ có chữ số hàng đơn vị khác nhau. (4) Chữ số hàng chục của hai số bất kỳ khác nhau. (5) Chữ số hàng trăm của hai số bất kỳ khác nhau. a) Tìm số phần tử của S là tập hợp các số có ba chữ số thỏa mãn (1) và (2). b) Tìm giá trị lớn nhất số phần tử của T các số có ba chữ số thỏa mãn (1) đến (5). + Cho tam giác đều ABC cạnh bằng a. Dựng tam giác A1B1C1 có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác A2B2C2 có các đỉnh là trung điểm của các cạnh của tam giác A1B1C1 … tam giác An+1Bn+1Cn+1 là trung điểm các cạnh của tam giác AnBnCn … Đặt p1; p2 … pn … và S1; S2 … Sn … lần lượt là chu vi và diện tích tam giác A1B1C1; A2B2C2 … AnBnCn … a) Tính (pn) và (Sn) theo a, n. b) Ký hiệu Pn = p1 + p2 + … + pn và Qn = S1 + S2 + … + Sn. Tính lim Pn và lim Qn.

Nguồn: toanmath.com

Đọc Sách

Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THPT Chu Văn An Thanh Hóa
Nội dung Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THPT Chu Văn An Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2022 – 2023 lần 1 trường THPT Chu Văn An, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán lớp 12 năm 2022 – 2023 lần 1 trường THPT Chu Văn An – Thanh Hóa : + Cho một miếng tôn mỏng hình chữ nhật ABCD với AB = 4dm và AD = 6dm. Trên cạnh AD lấy điểm E sao cho AE = 1dm, trên cạnh BC lấy điểm F là trung điểm BC (tham khảo hình 1). Cuộn miếng tôn lại một vòng sao cho AB và DC trùng khít nhau. Khi đó miếng tôn tạo thành mặt xung quanh của hình trụ (tham khảo hình 2). Thể tích V của tứ diện ABEF trong hình 2 bằng? + Một bồn hình trụ chứa dầu được đặt nằm ngang, có chiều dài 5m, bán kính đáy 1m, với nắp bồn đặt trên mặt nằm ngang của mặt trụ. Người ta rút dầu trong bồn tương ứng với 0,5m của đường kính đáy. Tính thể tích gần đúng nhất của khối dầu còn lại trong bồn. + Cho X là tập các giá trị của tham số m thỏa mãn đường thẳng (dy m): 12 7 cùng với đồ thị (C) của hàm số 1 3 2 4 1 3 y x mx x tạo thành hai miền kín có diện tích lần lượt là 1 2 S S thỏa mãn 1 2 S S (xem hình vẽ). Tích các giá trị của các phần tử của X là? File WORD (dành cho quý thầy, cô):
Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THPT Cẩm Thủy 1 Thanh Hóa
Nội dung Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THPT Cẩm Thủy 1 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi liên trường môn Toán lớp 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán lớp 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1 – Thanh Hóa : + Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1mvà 1,8m . Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây? + Người ta thiết kế một thùng chứa hình trụ (như hình vẽ) có thể tích V. Biết rằng giá của vật liệu làm mặt đáy và nắp của thùng bằng nhau và đắt gấp ba lần so với giá vật liệu để làm mặt xung quanh của thùng (chi phí cho mỗi đơn vị diện tích). Gọi chiều cao của thùng là h và bán kính đáy là r. Tính tỉ số h r sao cho chi phí vật liệu sản xuất thùng là nhỏ nhất? + Trong hội thi văn nghệ chào mừng ngày nhà giáo Việt Nam có 9 tiết mục lọt vào vòng chung khảo. Trong đó lớp 10A có 2 tiết mục, lớp 10B có 3 tiết mục và 4 tiết mục còn lại của 4 lớp khác nhau. Ban tổ chức sắp xếp thứ tự thi của các lớp một cách ngẫu nhiên. Tính xác suất để không có hai tiết mục của cùng một lớp liên tiếp nhau. File WORD (dành cho quý thầy, cô):
Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THCS THPT Như Xuân Thanh Hóa
Nội dung Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THCS THPT Như Xuân Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát học sinh giỏi môn Toán lớp 12 năm học 2022 – 2023 lần 1 trường THCS & THPT Như Xuân, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian 90 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán lớp 12 năm 2022 – 2023 lần 1 trường THCS & THPT Như Xuân – Thanh Hóa : + Một vận động viên bắn ba viên đạn vào bia với ba lần bắn độc lập. Xác suất để vận động viên bắn trúng vòng 10 điểm là 0,15. Xác suất để vận động viên bắn trúng vòng 8 điểm là 0,2. Xác suất để vận động viên bắn trúng vòng dưới 8 điểm là 0,3. Tính xác suất để vận động viên đó được ít nhất 28 điểm (tính chính xác đến hàng phần nghìn). + Cho khối nón có độ lớn góc ở đỉnh là 3, một khối cầu S1 nội tiếp trong khối nón. Gọi S2 là khối cầu tiếp xúc với tất cả các đường sinh của nón và với S1. Gọi S3 là khối cầu tiếp xúc với tất cả các đường sinh của khối nón và với S2, tương tự với khối cầu S4 S5. Gọi 1 2 V V V3 4 5 V V lần lượt là thể tích của khối cầu S S 1 2 3 và V là thể tích của khối nón. Giá trị V V 4 5 T V gần giá trị nào sau đây (làm tròn 2 chữ số sau dấu phẩy)? + Cần phải thiết kế các thùng dạng hình trụ có nắp đậy để đựng nước sạch có dung tích 3 V cm. Hỏi bán kính R(cm) của đáy hình trụ nhận giá trị nào sau đây để tiết kiệm vật liệu nhất?
Đề chọn HSG Toán THPT năm 2022 2023 trường Đại học Sư Phạm Hà Nội
Nội dung Đề chọn HSG Toán THPT năm 2022 2023 trường Đại học Sư Phạm Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp trường năm học 2022 – 2023 trường Đại học Sư Phạm Hà Nội, thành phố Hà Nội. Trích dẫn Đề chọn HSG Toán THPT năm 2022 – 2023 trường Đại học Sư Phạm Hà Nội : + Cho hàm số y = (2x – 3)/(x – 2) có đồ thị (C) và hai điểm A, B thay đổi thuộc (C) sao cho hoành độ của điểm A nhỏ hơn 2, hoành độ của điểm B lớn hơn 2. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB. + Lấy ngẫu nhiên ba số trong tập hợp S = {1; 2; 3; …; 19; 20}. Tính xác suất để hiệu của hai số bất kì trong ba số đó (số lớn trừ số bé) không nhỏ hơn 2. + Cho tứ diện ABCD có hai mặt ACD và BCD là các tam giác nhọn. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác BCD, G’ và H’ lần lượt là trọng tâm và trực tâm của tam giác ACD. Biết rằng đường thẳng HH’ vuông góc với mặt phẳng (ACD). a) Chứng minh rằng bốn điểm A, B, H và H’ đồng phẳng. b) Chứng minh rằng đường thẳng GG’ vuông góc với mặt phẳng (BCD).