Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2020 2021 trường THCS Lê Ngọc Hân Hà Nội

Nội dung Đề KSCL lớp 9 môn Toán năm 2020 2021 trường THCS Lê Ngọc Hân Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội Ngày 24 tháng 04 năm 2021, học sinh trường THCS Lê Ngọc Hân đã trải qua kỳ thi khảo sát chất lượng môn Toán lớp 9. Đề thi gồm 5 bài toán dạng tự luận, với thời gian làm bài là 90 phút. Đề bài không chỉ đơn thuần là những câu hỏi toán học mà còn thách thức tư duy sáng tạo của các em. Trong đó, một bài toán yêu cầu học sinh giải bằng cách lập phương trình hoặc hệ phương trình. Một đám đất hình chữ nhật có chu vi và diện tích ban đầu. Học sinh cần tính toán để tìm ra diện tích mảnh vườn ban đầu sau khi thay đổi kích thước. Bài toán thực tế khác yêu cầu học sinh tính toán mực nước sẽ dâng lên bao nhiêu sau khi thêm đất nặn vào cốc chứa nước. Học sinh cần áp dụng kiến thức về hình học không gian và tròn để giải quyết vấn đề này. Ngoài ra, đề KSCL còn đưa ra bài toán liên quan đến hệ tọa độ và đường parabol. Học sinh cần tìm giá trị của m để đường thẳng cắt parabol hoặc tìm tọa độ giao điểm giữa đường thẳng và parabol. Đề thi Toán lớp 9 năm 2020 – 2021 tại trường THCS Lê Ngọc Hân không chỉ đánh giá kiến thức mà còn khuyến khích học sinh áp dụng kiến thức vào thực tế và rèn luyện kỹ năng giải quyết vấn đề. Đây là cơ hội để các em thể hiện sự sáng tạo và logic trong quá trình giải bài toán.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 28 tháng 09 năm 2022. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một ôtô đi từ thành phố Hà Nội lúc 8 giờ sáng, dự định đến thành phố Hải Phòng vào lúc 10 giờ 30 phút sáng cùng ngày. Nhưng mỗi giờ ôtô đã đi chậm hơn so với dự định là 10 km nên 11 giờ 20 phút xe mới tới Hải Phòng. Tính chiều dài quãng đường Hà Nội — Hải Phòng. + Tính chiều cao của cây trong hình bên, biết rằng người đo đứng cách cây 2,25m và khoảng cách từ mắt người đo đến mặt đất là 1,5m. + Cho tam giác ABC vuông tại A, vẽ đường cao AH. Qua H kẻ các đường thẳng vuông góc với AB và AC lần lượt tại D và E. 1) Chứng minh tứ giác ADHE là hình chữ nhật và AD.AB = AE.AC 2) Kẻ AI vuông góc với DE (I thuộc DE), AI cắt BC tại M. Chứng minh tam giác ABC đồng dạng tam giác AED và M là trung điểm của BC. 3) Tam giác ABC cần thêm điều kiện gì để diện tích tứ giác ADHE đạt giá trị lớn nhất.
Đề khảo sát Toán 9 đầu năm học 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 29 tháng 09 năm 2022. Trích dẫn Đề khảo sát Toán 9 đầu năm học 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Mặt cắt của một ngôi nhà có phần mái có dạng tam giác ABC cân tại A. Biết CH = 4,5m và độ dốc của mái là C = 25°. Tính chiều cao AH của mái nhà (đơn vị: mét, làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác ABC vuông tại A có AM là đường cao. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ điểm H đến các đường thẳng AB và AC. 1) Giả sử AB = 6 cm, BC = 10 cm. Tính độ dài các đoạn thẳng BH, AH. 2) Chứng minh rằng AE.AB = AF.AC và cos ABF = AC/BC. 3) Gọi O là giao điểm của AH và EF. Trên tia đối của tia AH lấy điểm M, kẻ BD vuông góc với CM tại D. Biết rằng SABC. Chứng minh ba điểm B, O, D thẳng hàng. + Cho các số thực x, y, z >= 0 thỏa mãn x + y + z = 19 và x + y + z = 5. Tìm giá trị lớn nhất của x.
Đề khảo sát chất lượng Toán 9 đầu năm 2022 - 2023 trường THCS Chu Văn An - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2022 – 2023 trường THCS Chu Văn An, quận Tây Hồ, thành phố Hà Nội. Trích dẫn Đề khảo sát chất lượng Toán 9 đầu năm 2022 – 2023 trường THCS Chu Văn An – Hà Nội : + Rút gọn biểu thức. Giải phương trình sau. + Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm. Khi thực hiện, do cải tiến kỹ thuật nên mỗi ngày họ sản xuất được 60 sản phẩm. Do đó tổ đã hoàn thành trước kế hoạch 1 ngày. Hỏi theo kế hoạch tổ phải sản xuất bao nhiêu sản phẩm. + Cho tam giác ABC cân tại A, đường cao AH. Kẻ HE vuông góc với AB; HD vuông góc với AC. a) Chứng minh AH2 = AE.AB b) Chứng tỏ rằng: CD.CA = BE.AB c) Gọi giao điểm của ED và AH là M. Cho AM = 3MH và diện tích tam giác ABC bằng 16 cm. Tính diện tích tứ giác BEDC.
Đề khảo sát hè Toán 9 năm 2022 - 2023 trường THCS Nam Hồng - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp đề kiểm tra khảo sát hè môn Toán 9 năm học 2022 – 2023 trường THCS Nam Hồng, huyện Nam Trực, tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (20% số điểm) và 05 câu tự luận (80% số điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề khảo sát hè Toán 9 năm 2022 – 2023 trường THCS Nam Hồng – Nam Định : + Cho ABC có đường cao AH. Nếu BC không đổi còn đường cao AH tăng lên gấp 2 lần thì diện tích ABC sẽ: A. Tăng lên 2 lần B. Giảm đi 2 lần C. Không đổi D. Tăng lên 4 lần. + Giải bài toán bằng cách lập phương trình: Trong đợt thi giai đoạn 1, hai lớp 9A và 9B có 75 học sinh đạt yêu cầu. Trong đợt thi giai đoạn 2, do nỗ lực học tập lớp 9A vượt mức 10%, lớp 9B vượt mức 20% so với giai đoạn 1 nên cả hai lớp có 86 học sinh đạt yêu cầu. Tính xem trong đợt thi giai đoạn 2 mỗi lớp có bao nhiêu học sinh đạt yêu cầu? + Cho tam giác ABC có ba góc nhọn. Các đường cao AK, BM, CN của tam giác ABC cắt nhau tại H. a. Chứng minh b. Qua B kẻ đường thẳng vuông góc với AB và qua C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D. Chứng minh tứ giác BHCD là hình bình hành. c. Gọi G là trọng tâm của ABC; O là trung điểm của AD. Chứng minh ba điểm H, G, O thẳng hàng.