Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và phương pháp giải Toán 8 Ngô Văn Thọ

Tài liệu gồm 202 trang phân dạng và hướng dẫn phương pháp giải Toán 8 toàn tập – Đại số và Hình học, tài liệu được biên soạn bởi thầy Ngô Văn Thọ. Trong mỗi chuyên đề (ứng với mỗi chương) đều được phân dạng chi tiết, nếu các bước giải toán, các vì dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. Nội dung tài liệu : PHẦN A . ĐẠI SỐ 8 Chương I . Phép nhân và phép chia các đa thức 1. Nhân đơn thức với đa thức – nhân đa thức với đa thức 2. Hằng đẳng thức 3. Phân tích đa thức thành nhân tử + Vấn đề 1. Phương pháp đặt nhân tử chung + Vấn đề 2. Phương pháp nhóm nhiều hạng tử + Vấn đề 3. Phương pháp dùng hằng đẳng thức + Vấn đề 4. Một số phương pháp khác 4. Chia đa thức + Vấn đề 1. Chia đơn thức cho đơn thức + Vấn đề 2. Chia đa thức cho đơn thức + Vấn đề 3. Chia đa thức cho đa thức Chương II . Phân thức đại số 1. Phân thức đại số + Vấn đề 1. Tìm điều kiện để phân thức có nghĩa + Vấn đề 2. Dạng toán tìm giá trị của biến để phân thức nhận một giá trị nào đó + Vấn đề 3. Chứng minh một phân thức luôn có nghĩa 2. Tính chất cơ bản của phân thức đại số + Vấn đề 1. Phân thức bằng nhau + Vấn đề 2. Rút gọn phân thức 3. Các phép toán về phân thức + Vấn đề 1. Quy đồng mẫu thức của nhiều phân thức + Vấn đề 2. Thực hiện các phép toán trên phân thức Chương III . Phương trình bậc nhất một ẩn 1. Mở đầu về phương trình + Vấn đề 1. Chứng minh một số là nghiệm của một phương trình + Vấn đề 2. Số nghiệm của một phương trình + Vấn đề 3. Chứng minh hai phương trình tương đương 2. Phương trình bậc nhất một ẩn + Vấn đề 1. Phương trình đưa được về dạng phương trình bậc nhất + Vấn đề 2. Phương trình tích + Vấn đề 3. Phương trình chứa ẩn ở mẫu 3. Giải toán bằng cách lập phương trình + Vấn đề 1. Loại so sánh + Vấn đề 2. Loại tìm số gồm hai, ba chữ số + Vấn đề 3. Loại làm chung – làm riêng một việc + Vấn đề 4. Loại chuyển động đều + Vấn đề 5. Loại có nội dung hình học Chương IV . Bất phương trình bậc nhất một ẩn 1. Bất đẳng thức + Vấn đề 1. Chứng minh bđt dựa vào định nghĩa và tính chất cơ bản + Vấn đề 2. Phương pháp làm trội + Vấn đề 3. Chứng minh bất đẳng thức dựa vào bất đẳng thức cô–si 2. Bất phương trình bậc nhất một ẩn 3. Phương trình chứa dấu giá trị tuyệt đối [ads] PHẦN B . HÌNH HỌC 8 Chương I . Tứ giác 1. Tứ giác + Vấn đề 1. Sử dụng tính chất về các góc của một tứ giác để tính góc + Vấn đề 2. Sử dụng bất đẳng thức tam giác để giải các bài toán liên hệ đến các cạnh của một tứ giác 2. Hình thang – hình thang vuông + Vấn đề 1. Tính chất các góc của một hình thang + Vấn đề 2. Chứng minh một tứ giác là hình thang, hình thang vuông 3. Hình thang cân + Vấn đề 1. Sử dụng tính chất của hình thang cân để tính toán và chứng minh + Vấn đề 2. Chứng minh một tứ giác là hình thang cân 4. Đường trung bình của tam giác, của hình thang 5. Đối xứng trục 6. Hình bình hành + Vấn đề 1. Vận dụng tính chất của hình bình hành để chứng minh tính chất hình học + Vấn đề 2. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình bình hành 7. Đối xứng tâm 8. Hình chữ nhật + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật + Vấn đề 2. Vận dụng kiến thức hình chữ nhật để giải toán 9. Hình thoi + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình thoi + Vấn đề 2. Vận dụng kiến thức hình thoi để giải toán 10. Hình vuông + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình vuông + Vấn đề 2. Vận dụng kiến thức hình vuông để giải toán Chương II . Đa giác Chương III . Tam giác đồng dạng 1. Định lí Ta-lét trong tam giác – tính chất đường phân giác + Vấn đề 1. Tính độ dài đoạn thẳng, tỉ số, diện tích + Vấn đề 2. Chứng minh hai đường thẳng song song 2. Tam giác đồng dạng + Vấn đề 1. Sử dụng tam giác đồng dạng để tính toán + Vấn đề 2. Chứng minh hai tam giác đồng dạng

Nguồn: toanmath.com

Đọc Sách

Lý thuyết, các dạng toán và bài tập tứ giác
Tài liệu gồm 55 trang, tóm tắt lý thuyết, các dạng toán và bài tập tứ giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 1. Bài 1. Tứ giác. + Dạng 1. Tính góc của tứ giác. + Dạng 2. Vẽ tứ giác. + Dạng 3. Tính độ dài. Hệ thức giữa các độ dài. Bài 2. Hình thang. + Dạng 1. Tính góc của hình thang. + Dạng 2. Nhận biết hình thang, hình thang vuông. + Dạng 3. Tính toán và chứng minh về độ dài. Bài 3. Hình thang cân. + Dạng 1. Nhận biết hình thang cân. + Dạng 2. Sử dụng tính chất hình thang cân để tính số đo góc, độ dài đường thẳng. Bài 4. Đường trung bình của tam giác, của hình thang. + Dạng 1. Sử dụng đường trung bình của tam giác để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 2. Sử dụng đường trung bình của tam giác để chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng, tính góc. + Dạng 3. Sử dụng đường trung bình của hình thang để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 4. Sử dụng đường trung bình của hình thang để chứng minh hai đường thẳng song song, chứng minh ba đlểm thẳng hàng, tính góc. Bài 5. Dựng hình bằng thước và compa. Dựng hình thang. + Dạng 1. Dựng tam giác. + Dạng 2. Dựng hình thang. + Dạng 3. Dựng góc có số đo đặc biệt. + Dạng 4. Dựng tứ giác, dựng điểm hay đường thẳng thoả mãn một yêu cầu nào đó. Bài 6. Đối xứng trục. + Dạng 1. Vẽ hình, nhận biết hai hình đối xứng với nhau qua một trục. + Dạng 2. Sử dụng đối xứng trục để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm trục đối xứng của một hình, hình có trục đối xứng. + Dạng 4. Dựng hình, thực hành có sử dụng đối xứng trục. Bài 7. Hình bình hành. + Dạng 1. Nhận biết hình bình hành. + Dạng 2. Sử dụng tính chất của hình bình hành để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau. + Dạng 3. Sử dụng tính chất đường chéo hình bình hành để chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy. + Dạng 4. Dựng hình bình hành, hoặc dựng hình có liên quan đến hình bình hành. Bài 8. Đối xứng tâm. + Dạng 1. Vẽ hình đối xứng qua một tâm. + Dạng 2. Nhận biết hai điểm đối xứng với nhau qua một tâm. Sử dụng đối xứng tâm để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm tâm đối xứng của một hình, tìm hình có tâm đối xứng. + Dạng 4. Dựng hình có sử dụng đối xứng tâm. Bài 9. Hình chữ nhật. + Dạng 1. Nhận biết hình chữ nhật. + Dạng 2. Sử dụng tính chất hình chữ nhật để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tính chất đối xứng của hình chữ nhật. + Dạng 4. Áp dụng vào tam giác. + Dạng 5. Dựng hình chữ nhật. Bài 10. Đường thẳng song song với một đường thẳng cho trước. + Dạng 1. Đường thẳng song song cách đều. + Dạng 2. Chứng tỏ một điểm chuyển động trên một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Phát biểu một tập hợp điểm. Bài 11. Hình thoi. + Dạng 1. Nhận biết hình thoi. + Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. + Dạng 3. Tính chất đối xứng của hình thoi. + Dạng 4. Dựng hình thoi. Bài 12. Hình vuông. + Dạng 1. Nhận biết hình vuông. + Dạng 2. Sử dụng tính chất hình vuông để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. + Dạng 4. Dựng hình vuông, cắt hình vuông. Ôn tập chương I.
Lý thuyết, các dạng toán và bài tập phân thức đại số
Tài liệu gồm 42 trang, tóm tắt lý thuyết, các dạng toán và bài tập phân thức đại số, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 2. Bài 1. Phân thức đại số. + Dạng 1. Chứng minh hai phân thức bằng nhau. + Dạng 2. Tìm giá trị nhỏ nhất (GTNN), giá trị lớn nhất (GTLN) của phân thức. Bài 2. Tính chất cơ bản của phân thức đại số. Bài 3. Rút gọn phân thức. + Dạng 1. Điền đa thức vào chỗ trống để có đẳng thức. + Dạng 2. Rút gọn phân thức. + Dạng 3. Chứng minh đẳng thức. + Dạng 4. Tính giá trị của biểu thức. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 6. Chứng minh biểu thức không phụ thuộc vào biến. + Dạng 7. Rút gọn biểu thức có điều kiện cho trước. Bài 4. Quy đồng mẫu thức của nhiều phân thức. + Dạng 1. Tìm mẫu thức chung của nhiều phân thức. + Dạng 2. Quy đồng mẫu thức. Bài 5. Phép cộng các phân thức đại số. Bài 6. Phép trừ các phân thức đại số. + Dạng 3. Rút gọn và tính giá trị của biểu thức. + Dạng 4. Chứng minh biểu thức không phụ thuộc vào biến. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 6. Áp dụng phân thức đại số vào bài toán chuyển động. + Dạng 7. Thực hiện phép tính để rút gọn phân thức. Bài 7. Phép nhân các phân thức đại số. Bài 8. Phép chia các phân thức đại số. Bài 9. Biến đổi các biểu thức hữu tỉ giá trị của phân thức. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Điều kiện của x để giá trị phân thức xác định. + Dạng 3. Chứng minh biểu thức không phụ thuộc vào biến. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức
Tài liệu gồm 59 trang, tóm tắt lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 1. Bài 1. Nhân đơn thức với đa thức. Bài 2. Nhân đa thức với đa thức. + Dạng 1. Làm tính nhân. + Dạng 2. Tính giá trị của biểu thức. + Dạng 3. Rút gọn biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến. + Dạng 6. Giải toán bằng cách đặt ẩn x. + Dạng 7. Chứng minh đẳng thức. + Dạng 8. Áp dụng vào số học. + Dạng 9. Đa thức đồng nhất bằng nhau. Bài 3 – Bài 4 – Bài 5. Những hằng đẳng thức đáng nhớ. + Dạng 1. Áp dụng các hằng đẳng thức đáng nhớ để tính. + Dạng 2. Chứng minh đẳng thức. + Dạng 3. Tính nhanh. + Dạng 4. Rút gọn biểu thức và tính giá trị của biểu thức. + Dạng 5. Điền vào ô trống các hạng từ thích hợp. + Dạng 6. Biểu diễn đa thức dưới dạng bình phương, lập phương của một tổng (một hiệu). + Dạng 7. Một số hằng đẳng thức tổng quát. Bài 6 – Bài 7 – Bài 8 – Bài 9. Phân tích đa thức thành nhân tử. + Dạng 1. Phân tích đa thức thành nhân tử. + Dạng 2. Tính nhanh. + Dạng 3. Tính giá trị của biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Áp dụng vào số học. + Dạng 6. Tìm các cặp số nguyên (x;y) thỏa mãn đẳng thức cho trước. + Dạng 7. Phương pháp đặt ẩn phụ. + Dạng 8. Phương pháp hệ số bất định. + Dạng 9. Chứng minh đẳng thức. + Dạng 10. Chứng minh bất đẳng thức. Bài 10. Chia đơn thức cho đơn thức. Bài 11. Chia đa thức cho đơn thức. + Dạng 1. Làm tính chia. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. Không làm tính chia, xét xem đa thức a có chia hết cho đơn thức b không? Bài 12. Chia đa thức một biến đã sắp xếp. + Dạng 1. Thực hiện phép chia đa thức. + Dạng 2. Tính nhanh. + Dạng 3. Áp dụng định lí Bézout để phân tích đa thức ra thừa số. + Dạng 4. Tìm số nguyên n để biểu thức a(n) chia hết cho biểu thức b(n). + Dạng 5. Phân tích đa thức thành nhân tử bằng phương pháp xét giá trị riêng. + Dạng 6. Tìm các hệ số để đa thức f(x) chia hết cho g(x). + Dạng 7. Tìm dư trong phép chia đa thức. Ôn tập chương I. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Phương pháp phân tích đa thức thành nhân tử
Tài liệu gồm 74 trang, hướng dẫn các phương pháp phân tích đa thức thành nhân tử, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8. A. MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. Các phương pháp phân tích cơ bản 1. Phương pháp đặt nhân tử chung. + Tìm nhân tử chung là những đơn thức, đa thức có mặt trong tất cả các hạng tử. + Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác. + Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng). 2. Phương pháp dùng hằng đẳng thức. + Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử. + Cần chú ý đến việc vận dụng hằng đẳng thức. 3. Phương pháp nhóm nhiều hạng tử và phối hợp các phương pháp. + Kết hợp các hạng tử thích hợp thành từng nhóm. + Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức. II. Một số phương pháp nâng cao Chúng ta đã biết các phương pháp cơ bản để phân tích một đa thức thành nhân tử là đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử và phối hợp các phương pháp đó. Tuy nhiên có những đa thức mặc dù rất đơn giản, nếu chỉ biết dùng ba phương pháp đó thôi thì không thể phân tích thành nhân tử được. Do đó trong chuyên đề này chúng ta sẽ xét thêm một số phương pháp khác để phân tích đa thức thành nhân tử. 1. Phương pháp tách hạng tử. 1.1. Đối với đa thức bậc hai f(x) = ax2 + bx + c có nghiệm. 1.2. Đối với đa thức hai biến dạng f(x;y) = ax2 + bxy + cy2. 1.3. Đối với đa thức bậc từ 3 trở lên. 1.4. Đối với đa thức nhiều biến. 2. Phương pháp thêm và bớt cùng một hạng tử. Với một số đa thức không thể sử dụng các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử cũng như phép tách hạng tử để phân tích thành nhân tử. Khi đó ta có thể sử dụng phép thêm bớt cùng một hạng tử với mục đích làm xuất hiện nhân tử chung hoặc xuất hiện các hằng đẳng thức. 2.1. Thêm và bớt cùng một số các hạng tử làm xuất hiện các hằng đẳng thức. 2.2. Thêm và bớt cùng một số hạng tử làm xuất hiện nhân tử chung. 3. Phương pháp đổi biến. Với một số đa thức có bậc cao hoặc có cấu tạo phức tạp mà khi thự hiện theo các phương pháp như trên gây ra nhiều khó khăn. Khi đó thông qua phép đổi biết ta đưa được về đa thức có bậc thấp hơn goặc đơn giản hơn để thuận tiện cho việc phân tích thành nhân tử. Sau khi phân tích thành nhân tử đối với đa thức mới ta thay trở lại biến cũ để được đa thức với biến cũ. 4. Phương pháp hệ số bất định. 5. Phương pháp xét giá trị riêng. Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại. B. MỘT SỐ BÀI TẬP TỰ LUYỆN C. HƯỚNG DẪN GIẢI