Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Nam Trực - Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Nam Trực – Nam Định : + Cho đường tròn (O) và đường thẳng d (không đi qua tâm O) cắt đường tròn (O) tại hai điểm B và C. Kẻ đường kính CD của đường tròn (O). Tiếp tuyến tại D của đường tròn (O) cắt đường thẳng d tại A. Đường tròn ngoại tiếp tam giác ADO cắt đường tròn (O) tại điểm thứ hai là E và cắt BC tại điểm I. 1) Chứng minh: AE là tiếp tuyến của đường tròn (O) và I là trung điểm của BC. 2) Gọi T là giao điểm của DE và BC. Chứng minh: 2 1 1 AT AB AC 3) Chứng minh rằng: DE OI và tiếp tuyến tại C của đường tròn (O) đồng quy. + Cho m n là các số tự nhiên thỏa mãn 2 2 m n 2023 2022 chia hết cho mn. Chứng minh rằng: m n là hai số lẻ và nguyên tố cùng nhau. + Trên bảng ghi bốn số: 2, 3, 5 và 6. Ta thực hiện một trò chơi như sau: Mỗi lần xóa đi hai số bất kì, chẳng hạn a b và thay thế bằng hai số 2 2 a b a b và 2 2 a b a b đồng thời giữ nguyên hai số còn lại. Hỏi sau một số lần thay đổi có khi nào ta thu được bốn số mới trên bảng đều nhỏ hơn 1 hay không? Vì sao?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2016.
Đề thi chọn học sinh giỏi Toán 9 năm 2015 - 2016 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2015 – 2016 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2016; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2015 – 2016 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x m xm 2 (m là tham số, x là ẩn). 1. Chứng minh với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt 1 2 x x 2. Tìm tất cả các giá trị của tham số m sao cho: 1 2 1 2 2 1 1 2 2 1 2 1 55 x x. + Cho các số thực không âm x, y, z đôi một khác nhau đồng thời thoả mãn zxzy 1. Chứng minh rằng: 222 111 4 xy zx zy. + Từ điểm M nằm ngoài đường tròn (O) vẽ các tiếp tuyến MA, MB và cát tuyến MNP với đường tròn (A, B là các tiếp điểm, N nằm giữa M và P). Gọi H là giao điểm của AB và MO. 1. Chứng minh: Tứ giác NHOP nội tiếp được đường tròn. 2. Kẻ dây cung PQ vuông góc với đường thẳng MO. Chứng minh ba điểm N, H, Q thẳng hàng. 3. Gọi E là giao điểm của MO và cung nhỏ AB của đường tròn (O). Chứng minh: NE là tia phân giác của MNH.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 06/03/2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 - 2015 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 – 2015 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 05/04/2015, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.