Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8

Tài liệu gồm 57 trang, hướng dẫn giải các dạng toán chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8, giúp học sinh lớp 8 ôn tập, rèn luyện để chuẩn bị cho kì thi học sinh giỏi môn Toán 8 các cấp. A. Giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức Nếu với mọi giá trị của biến thuộc một khoảng xác định nào đó mà giá trị của biểu thức A luôn luôn lớn hơn hoặc bằng (nhỏ hơn hoặc bằng) một hằng số k và tồn tại một giá trị của biến để A có giá trị bằng k thì k gọi là giá trị nhỏ nhất (giá trị lớn nhất) của biểu thức A ứng với các giá trị của biểu thức thuộc khoảng xác định nói trên. B. Các dạng toán Dạng 1 : Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. Phương pháp: Áp dụng hằng đẳng thức số 1 và số 2. Dạng 2 : Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. Phương pháp: Ta đưa về dạng tổng bình phương. Dạng 3 : Đa thức có từ 2 biến trở lên. Phương pháp: Đa số các biểu thức có dạng 2 2 F x y ax by cxy dx ey h a b c. Ta đưa dần các biến vào trong hằng đẳng thức 2 2 2 a ab b a b như sau 2 2 F x y mK x y nG y r hoặc 2 2 F x y mK x y nH x r. Trong đó G y H x là biểu thức bậc nhất đối với biến, còn K x y px qy k cũng là biểu thức bậc nhất đối với cả hai biến x và y. Cụ thể: Ta biến đổi (1) để chuyển về dạng (2) như sau với 2 a ac b 0 4 0. Nếu m > 0, n > 0 thì ta tìm được giá trị nhỏ nhất. Nếu m < 0, n < 0 thì ta tìm được giá trị lớn nhất. Dễ thấy rằng luôn tồn tại (x;y) để có dấu của đẳng thức, như vậy ta sẽ tìm được cực trị của đa thức đã cho. Trong cả hai trường hợp trên: Nếu r = 0 thì phương trình F(x;y) = 0 có nghiệm. Nếu F x y r thì không có nào thỏa mãn F(x;y) = 0. Nếu a ac b r F x y phân tích được tích của hai nhân tử, giúp ta giải được các bài toán khác. Dạng 4 : Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. Phương pháp: – Dồn biến từ điều kiền rồi thay vào biểu thức. – Biến đổi biểu thức thành các thành phần có chứa điều kiện để thay thế. – Sử dụng thêm một số bất đẳng thức phụ. Dạng 5 : Phương pháp đổi biến số. Phương pháp: – Phân tích thành các biểu thức tương đồng để đặt ẩn phụ. – Sử dụng phương pháp nhóm hợp lý làm xuất hiện nhân tử để đặt ẩn phụ. – Sử dụng các hằng đẳng thức. Dạng 6 : Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. Dạng 7 : Dạng phân thức. A. Phân thức có tử là hằng số, mẫu là tam thức bậc hai. Phương pháp: Biểu thức dạng này đạt giá trị nhỏ nhất khi mẫu đạt giá trị lớn nhất. B. Phân thức có mẫu là bình phương của một nhị thức. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. C. Tìm GTLN – GTNN của phân thức có dạng khác. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. 1. Bậc của tử nhỏ hơn bậc của mẫu. 2. Bậc của tử bằng bậc của mẫu.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trường hợp đồng dạng thứ ba
Nội dung Chuyên đề trường hợp đồng dạng thứ ba Bản PDF - Nội dung bài viết Chuyên đề trường hợp đồng dạng thứ ba Chuyên đề trường hợp đồng dạng thứ ba Bộ tài liệu này bao gồm 15 trang, tập trung vào việc hướng dẫn học sinh về trọng tâm cần đạt trong chương trình Hình học 8 chương 3: Tam giác đồng dạng. Tài liệu cung cấp tóm tắt lý thuyết, phân loại dạng toán và hướng dẫn giải các dạng toán liên quan đến trường hợp đồng dạng thứ ba, từ cơ bản đến nâng cao. Phần I: TÓM TẮT LÝ THUYẾT Được trình bày một cách dễ hiểu, tóm tắt lý thuyết giúp học sinh nắm vững kiến thức chính liên quan đến đồng dạng tam giác. Phần II: BÀI TẬP VÀ CÁC DẠNG TOÁN - Dạng 1: Chứng minh đồng dạng hai tam giác bằng cách chỉ ra sự tương ứng của hai cặp góc trong hai tam giác. - Dạng 2: Sử dụng trường hợp đồng dạng thứ ba để tính độ dài các cạnh hoặc chứng minh các hệ thức/góc bằng nhau trong tam giác. Các phương pháp giải được trình bày chi tiết, giúp học sinh hiểu rõ cách áp dụng trường hợp đồng dạng thứ ba trong giải bài tập một cách chính xác. Bên cạnh đó, tài liệu còn tuyển chọn các bài tập từ dễ đến khó, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình ôn tập và học tập. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh nắm vững kiến thức về trường hợp đồng dạng thứ ba trong Hình học 8 chương 3.
Chuyên đề trường hợp đồng dạng thứ hai
Nội dung Chuyên đề trường hợp đồng dạng thứ hai Bản PDF - Nội dung bài viết Chuyên đề trường hợp đồng dạng thứ hai Chuyên đề trường hợp đồng dạng thứ hai Bộ tài liệu này bao gồm 11 trang chứa các kiến thức chính cần phải nắm vững về trường hợp đồng dạng thứ hai, hướng dẫn cách phân loại và giải các dạng toán, cũng như lựa chọn các bài tập từ dễ đến khó về chuyên đề này. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. Tóm tắt lý thuyết: Bao gồm các kiến thức cơ bản về chuyên đề trường hợp đồng dạng thứ hai. II. Bài tập và các dạng toán: Dạng 1. Chứng minh hai tam giác đồng dạng: Phương pháp giải: Bước 1: Xác định hai tam giác cần chứng minh, chọn ra hai góc bằng nhau và chứng minh (nếu cần). Bước 2: Tính tỉ số các cạnh tạo nên mỗi góc, sau đó chứng minh chúng bằng nhau. Bước 3: Dựa vào kết quả từ bước 2, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai: Phương pháp giải: Sử dụng các trường hợp đồng dạng thứ hai để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc các cặp cạnh tương ứng còn lại bằng nhau. Thông qua các bài tập và hướng dẫn chi tiết, tài liệu này sẽ giúp học sinh nắm vững kiến thức về trường hợp đồng dạng thứ hai trong Hình học và áp dụng chúng vào việc giải các bài tập thực hành.
Chuyên đề trường hợp đồng dạng thứ nhất
Nội dung Chuyên đề trường hợp đồng dạng thứ nhất Bản PDF - Nội dung bài viết Tài liệu Chuyên đề trường hợp đồng dạng thứ nhất: Tam giác đồng dạng Tài liệu Chuyên đề trường hợp đồng dạng thứ nhất: Tam giác đồng dạng Tài liệu này bao gồm 09 trang, tập trung vào lý thuyết cần đạt, phân loại dạng toán và hướng dẫn giải các bài toán liên quan đến chuyên đề trường hợp đồng dạng thứ nhất. Nội dung của tài liệu được chia thành hai phần chính. I. Tóm tắt lý thuyết: Phần này tập trung vào việc giải thích cách chứng minh hai tam giác đồng dạng. Phương pháp giải được đưa ra thông qua việc so sánh tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau. Điều cần chứng minh sẽ được tự nhiên suy ra từ đó. II. Bài tập và các dạng toán: Phần này cung cấp các dạng bài tập từ cơ bản đến nâng cao liên quan đến trường hợp đồng dạng thứ nhất. Mỗi dạng bài tập được kèm theo phương pháp giải chi tiết và hướng dẫn cụ thể. Những bài tập được lựa chọn đảm bảo sự đa dạng và phong phú, từ việc chứng minh hai tam giác đồng dạng đến việc tính độ dài các cạnh và chứng minh các góc bằng nhau sử dụng trường hợp đồng dạng thứ nhất. Tài liệu này sẽ là một công cụ hữu ích trong quá trình học tập chương trình Hình học lớp 8, đặc biệt trong chương 3 về tam giác đồng dạng. Với đáp án và lời giải chi tiết, học sinh sẽ được hỗ trợ đầy đủ để hiểu rõ và áp dụng các kiến thức cần thiết. Đồng thời, cách trình bày linh hoạt và dễ hiểu trong tài liệu cũng giúp người đọc dễ dàng tiếp cận và áp dụng kiến thức vào thực tế.
Chuyên đề khái niệm hai tam giác đồng dạng
Nội dung Chuyên đề khái niệm hai tam giác đồng dạng Bản PDF - Nội dung bài viết Chuyên đề khái niệm hai tam giác đồng dạngKiến thức cơ bảnDạng bài tập cơ bản Chuyên đề khái niệm hai tam giác đồng dạng Chuyên đề này bao gồm 11 trang tài liệu, tóm tắt các khái niệm quan trọng về hai tam giác đồng dạng, phân loại dạng bài tập và hướng dẫn cách giải. Được tuyển chọn từ cơ bản đến nâng cao, các bài tập trong tài liệu giúp học sinh hiểu rõ về khái niệm hai tam giác đồng dạng. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh tự tin hơn trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. Kiến thức cơ bản Tài liệu tập trung vào những kiến thức cơ bản như cách vẽ tam giác đồng dạng với một tam giác cho trước và cách chứng minh hai tam giác đồng dạng. Học sinh sẽ được hướng dẫn xác định tỉ số đồng dạng và kẻ đường thẳng song song với một cạnh của tam giác. Dạng bài tập cơ bản Các dạng bài tập cơ bản trong tài liệu bao gồm việc vẽ tam giác đồng dạng, chứng minh hai tam giác đồng dạng thông qua việc sử dụng định nghĩa hoặc định lí. Học sinh cũng sẽ được hướng dẫn tính độ dài cạnh và tỉ số đồng dạng thông qua các tam giác đồng dạng. Trong tài liệu, cũng có dạng bài tập chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng, giúp học sinh hiểu rõ hơn về khái niệm này.