Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn tập cung và góc lượng giác, công thức lượng giác - Phùng Hoàng Em

Tài liệu gồm 12 được biên soạn bởi thầy Phùng Hoàng Em bao gồm tóm tắt lý thuyết, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm chủ đề cung và góc lượng giác, công thức lượng giác trong chương trình Đại số 10 chương 6, tài liệu giúp học sinh ôn tập chuẩn bị cho kỳ kiểm tra 1 tiết Đại số 10 chương 6. A. LÝ THUYẾT CẦN NHỚ 1. Công thức lượng giác cơ bản. 2. Công thức cộng. (Dùng để tách góc, hoặc ghép góc) 3. Công thức góc nhân đôi. (Dùng để giảm góc) 4. Công thức hạ bậc. (Dùng để làm mất bình phương) 5. Dấu của các tỉ số lương giác tương ứng trên các góc phần tư. B. CÁC DẠNG TOÁN TỰ LUẬN Dạng 1 . Cho trước 1 tỉ số lượng giác, tính các tỉ số lượng giác còn lại 1. Ta thực hiện theo các bước: + Sử dụng công thức thích hợp để tính tỉ số tiếp theo (chú ý nhóm công thức cơ bản). + Ứng với miền của α đề cho, xem Mục 5. để chọn kết quả đúng. + Tính toán các tỉ số còn lại. 2. Nếu đề cho trước 1 tỉ số lượng giác, yêu cầu tính giá trị biểu thức. Ta thường biến đổi biểu thức đó về giá trị đã cho. Sau đó, thay kết quả. [ads] Dạng 2 . Rút gọn biểu thức hoặc chứng minh đẳng thức 1. Các phương pháp thường dùng: + Biến đổi vế phức tạp của đẳng thức về vế đơn giản. + Biến đổi tương đương để đẳng thức đi đến kết quả hiển nhiên đúng. + Phối hợp cả hai cách trên. 2. Chú ý: + Nếu trong đẳng thức, các góc đều giống nhau, ta ưu tiên nhóm công thức cơ bản. + Nếu trong đẳng thức, có xuất hiện góc gấp đôi và bình phương tỉ số lượng giác, ta ưu tiên nhóm nhân đôi và hạ bậc. + Nếu cần tách góc, ta ưu tiên nhóm công thức cộng. C. CÂU HỎI TRẮC NGHIỆM Tuyển chọn 60 bài toán cung và góc lượng giác, công thức lượng giác có đáp án.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Lượng giác - Phạm Thu Hiền
Lượng giác đóng vai trò quan trọng và xuyên suốt trong chương trình toán phổ thông và được ứng dụng khá nhiều trong thực tế, đặc biệt là trong lĩnh vực nghiên cứu thiên văn. Đây sẽ là một trong những vấn đề quan trọng trong kì thi THPT quốc gia 2018, khi chương trình 10 và 11 được đưa vào trong đề thi. Chủ đề lượng giác được chia làm ba phần: + Phần 1: Cơ sở lí thuyết như cung liên kết, công thức lượng giác, hằng đẳng thức lượng giác, hàm số lượng giác. [ads] + Phần 2: Các dạng phương trình lượng giác thường gặp. + Phần 3: Một số bài toán lượng giác điển hình có liên quan. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh THPT. Sẽ không tránh khỏi thiếu sót khi biên tập, rất mong nhận được sự đóng góp từ quý bạn đọc để chuyên đề ngày một hoàn thiện hơn.
Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio - Nguyễn Tiến Chinh
Tài liệu Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio của thầy giáo Nguyễn Tiến Chinh gồm 14 trang. Tài liệu hướng dẫn mẹo bấm máy tính nhanh của một số bài toán lượng giác thường gặp.
5 dạng toán hàm số lượng giác điển hình - Trần Đình Cư
Tài liệu gồm 19 trang trình bày 5 dạng toán thường gặp về hàm số lượng giác: + Dạng 1. Tìm tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của hàm số. + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. + Dạng 5. Vẽ đồ thị hàm số lượng giác. Mỗi dạng đều có phương pháp giải, ví dụ mẫu có lời giải chi tiết kèm theo phần bài tập.
Chuyên đề phương trình lượng giác - Trần Duy Thúc
Tài liệu Chuyên đề phương trình lượng giác của thầy Trần Duy Thúc gồm 39 trang, tài liệu tóm tắt những công thức lượng giác thường gặp, các dạng phương lượng giác cơ bản và nâng cao được đan xen với 50 ví dụ về các phương trình lượng giác điển hình. Phần cuối tài liệu là tuyển tập 160 bài toán phương trình lượng giác được trích từ các đề thi Quốc gia, đề dự bị và đề thi thử.