Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Bảo Thắng Lào Cai

Nội dung Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Bảo Thắng Lào Cai Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022 - 2023 Phòng GD&ĐT Bảo Thắng Lào Cai Đề thi thử Toán vào năm 2022 - 2023 Phòng GD&ĐT Bảo Thắng Lào Cai Chúng tôi xin gửi đến quý thầy cô và các em học sinh lớp 10 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 - 2023 của Phòng Giáo dục và Đào tạo huyện Bảo Thắng, tỉnh Lào Cai. Đề thi bao gồm đáp án, hướng dẫn giải chi tiết và thang điểm. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: Cho 5 kg dung dịch loại I và 6 kg dung dịch loại II của cùng một loại muối A. Biết rằng tổng khối lượng muối A trong cả hai dung dịch bằng 0.49 kg và nồng độ muối A trong dung dịch loại I cao hơn dung dịch loại II 1%. Hãy tính khối lượng muối A trong mỗi dung dịch. Chọn ngẫu nhiên một học sinh từ một nhóm gồm 3 học sinh lớp 7, 5 học sinh lớp 8 và 8 học sinh lớp 9. Tính xác suất để học sinh được chọn là lớp 7 hoặc lớp 8. Cho tam giác ABC đều có cạnh bằng a. a) Tính độ dài đường cao AH của tam giác ABC; b) Trên tia đối của tia BC lấy điểm D sao cho góc ADC bằng 45 độ. Hãy tính độ dài đoạn BD. Hy vọng rằng đề thi sẽ giúp các em ôn tập hiệu quả và nâng cao kiến thức Toán để chuẩn bị tốt cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Thái Nguyên
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Thái Nguyên gồm có 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho số nguyên dương n thỏa mãn 2n + 1 và 3n + 1 là các số chính phương. Chứng minh 15n + 8 là hợp số. + Bạn Chi được thưởng mỗi ngày ít nhất một chiếc kẹo, nhưng trong 7 ngày liên tiếp, tổng số kẹo Chi nhận được không quá 10 chiếc. Chứng minh trong một số ngày liên tiếp, tổng số kẹo Chi nhận được là 27 chiếc. + Cho đường tròn (I;r) nội tiếp tam giác ABC. Điểm M thuộc cạnh BC với M khác B, M khác C. Đường tròn (I1;r1) nội tiếp tam giác AMC. Đường thẳng song song với BC, tiếp xúc với đường tròn (I1;r1) cắt các cạnh AB, AC lần lượt tại B0, C0. Gọi N là giao điểm của AM với B0C0, đường tròn (I2;r2) nội tiếp tam giác AB0N. Chứng minh: 1. Bốn điểm A, I, I1, I2 cùng nằm trên một đường tròn. 2. r = r1 + r2.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Tây Ninh
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tây Ninh gồm có 01 trang với 09 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tây Ninh : + Cho tam giác ABC có ABC = 30◦, ACB = 15◦ và M là trung điểm của BC. Lấy điểm D thuộc cạnh BC sao cho CD = AB. Tính số đo góc MAD. + Cho a, b, c là các số thực có tổng bằng 0 và −1 ≤ a, b, c ≤ 1. Tìm giá trị lớn nhất của biểu thức P = a2 + 2b2 + c2. + Cho tam giác ABC nhọn, không cân có O là tâm đường tròn ngoại tiếp và AH là đường cao với H thuộc BC. Gọi M là trung điểm cạnh BC và K là hình chiếu vuông góc của M trên cạnh AC. Đường tròn tâm I ngoại tiếp tam giác ABK cắt lại cạnh BC tại D. 1. Chứng minh CH.CM = CB.CD. 2. Gọi N là trung điểm của AB. Chứng minh I là trung điểm của ON.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Quảng Ngãi
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Ngãi : + Cho tam giác ABC vuông tại A, có đường cao AH. Tia phân giác của HAC cắt HC tại D. Gọi K là hình chiếu vuông góc của D trên AC. Tính AB, biết BC = 25 cm và DK = 6 cm. + Cho tam giác nhọn ABC có AB < AC, nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Đường thẳng AH cắt BC tại D và cắt đường tròn (O) tại điểm thứ hai là K. Gọi L là giao điểm của hai đường thẳng CH và AB, S là giao điểm của hai đường thẳng BH và AC. (a) Chứng minh tứ giác BCSL nội tiếp và BC là đường trung trực của đoạn thẳng HK. (b) Gọi M là trung điểm của BC, đường thẳng OM cắt các đường thẳng AB, AC lần lượt tại P, Q. Gọi N là trung điểm của PQ. Chứng minh hai đường thẳng HM và AN cắt nhau tại một điểm nằm trên đường tròn (O). + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021, đôi một nguyên tố cùng nhau. Chứng minh rằng trong 16 số trên có ít nhất một số là số nguyên tố.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Phú Yên
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Phú Yên gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho đường tròn (O; R), lấy điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ hai tiếp tuyến AM, AN (M, N là các tiếp điểm) và cát tuyến ABC (AB < AC). Gọi I là trung điểm của BC, T là giao điểm của NI với (O) ( T khác N). 1. Chứng minh rằng tam giác AMN đều. 2. Chứng minh rằng MT // AC. 3. Tiếp tuyến của (O) tại B, C cắt nhau ở K. Chứng minh rằng ba điểm K, M, N thẳng hàng. + Tìm cặp số (x; y) thỏa mãn phương trình x2 + y2 + 8x + y − 2xy + 3 = 0 sao cho y đạt giá trị lớn nhất. + Cho hình vuông ABCD . Gọi E, F lần lượt là trung điểm của CD, AD và G là giao điểm của AE và BF. 1. Chứng minh rằng FED = FGD. 2. Gọi H là điểm đối xứng với F qua G, I là giao điểm của BD và EF. Đường thẳng qua D, song song với BF cắt HI tại K. Chứng minh rằng K là trực tâm của tam giác G.