Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2019 2020 sở GD ĐT Thái Bình

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2019 2020 sở GD ĐT Thái Bình Bản PDF - Nội dung bài viết Đề thi học kỳ 1 (HK1) lớp 9 môn Toán năm học 2019-2020 sở GD ĐT Thái Bình Đề thi học kỳ 1 (HK1) lớp 9 môn Toán năm học 2019-2020 sở GD ĐT Thái Bình Ngày 06 tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Bình đã tổ chức kiểm tra chất lượng học kỳ 1 môn Toán cho học sinh lớp 9 năm học 2019-2020. Đề thi HK1 Toán lớp 9 năm học 2019-2020 sở GD&ĐT Thái Bình bao gồm 01 trang với 05 bài toán tự luận, thời gian làm bài là 120 phút. Trích dẫn đề thi HK1 Toán lớp 9 năm học 2019-2020 sở GD&ĐT Thái Bình: + Cho hai đường thẳng (d1): y = 2x + m và (d2): y = (m^2 + 1)x - 1 (với m là tham số). Tìm m để (d1) song song với (d2). Tìm m để (d1) cắt Ox ở A, cắt Oy ở B (A và B khác O) sao cho AB = 2√5. Tìm tọa độ giao điểm C của (d1) và (d2) khi m = 2. Xác định a để đường thẳng (d3): y = (12 - 5a)x + a^2 - 2√(a - 2) đi qua điểm C. + Cho đường tròn tâm O, điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA, SB với đường tròn (A, B là các tiếp điểm). Kẻ đường kính AOC. Gọi H là giao điểm của SO và AB. Chứng minh bốn điểm S, A, C, B cùng thuộc một đường tròn. Chứng minh HA = HB và tính độ dài AB biết 1/SA^2 + 4/AC^2 = 1. Gọi K là hình chiếu vuông góc của B trên AC. Chứng minh tam giác SAO đồng dạng với tam giác BKC và SC đi qua trung điểm của BK. Đề thi mang đến cho học sinh lớp 9 không chỉ khả năng giải bài toán mà còn yêu cầu kỹ năng suy luận, chứng minh và tính toán. Để đạt kết quả tốt, học sinh cần ôn tập và thực hành nhiều bài tương tự để nắm vững kiến thức và cải thiện kỹ năng trong môn Toán của mình.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng học kỳ 1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Nam Định
Đề khảo sát chất lượng học kỳ 1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Nam Định thuộc chuyên mục đề thi HK1 Toán 9 gồm 8 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = (m – 1)x + m. a) Xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2. b) Xác định giá trị của m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3. c) Vẽ đồ thị của hai hàm số ứng với giá trị của m tìm được ở các câu a) và b) trên cùng hệ trục tọa độ Oxy và tìm tọa độ giao điểm của hai đường thẳng vừa vẽ được. [ads] + Cho đường tròn (O, R) và đường thẳng d cố định không cắt đường tròn. Từ một điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB. a) Chứng minh C thuộc đường tròn (O, R) và AC là tiếp tuyến của đường tròn (O, R). b) Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. Chứng minh OH.OA = OI.OK = R^2. c) Chứng minh khi A thay đổi trên đường thẳng d thì đường thẳng BC luôn đi qua một điểm cố định.