Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm học 2018 - 2019 trường THPT Nguyễn Hiền - Đà Nẵng

Đề thi HK1 Toán 10 năm học 2018 – 2019 trường THPT Nguyễn Hiền – Đà Nẵng có mã đề chính thức T10-01 gồm 02 trang, đề được biên soạn theo hình thức kết hợp trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 4 – 6, trong đó phần trắc nghiệm gồm 20 câu và phần tự luận gồm 2 câu, thời gian để học sinh hoàn thành bài thi là 90 phút (không tính khoảng thời gian giám thị coi thi phát đề), đề thi có đáp án và lời giải chi tiết mã đề 01, 02, 03, 04. Trích dẫn đề thi HK1 Toán 10 năm học 2018 – 2019 trường THPT Nguyễn Hiền – Đà Nẵng : + Cho X là tập hợp các số nguyên tố nhỏ hơn 9, Y là tập hợp các số nguyên dương chẵn nhỏ hơn 10, K là tập hợp các ước nguyên dương của 12. Tập hợp X ∪ (Y ∩ K) được viết dưới dạng liệt kê phần tử là? + Cho tam giác ABC và điểm M sao cho MA – MB – MC = 0. Mệnh đề nào sau đây đúng? A. ABCM là hình bình hành. B. ABMC là hình bình hành. C. BAMC là hình bình hành. D. AMBC là hình bình hành. [ads] + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(−3;6), B(1;2), C(3;4). a) Tìm tọa độ của I là trung điểm đoạn thẳng BC và tính tích vô hướng OA.(OB + OC). b) Tính (giá trị đúng) diện tích của hình tròn ngoại tiếp tam giác ABC.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường TH Thực hành Sài Gòn - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường Trung học Thực hành Sài Gòn – TP HCM : + Trong mặt phẳng tọa độ, cho ba điểm A(-1;4); B(2;5); C(3;-8). a) Chứng minh rằng tam giác ABC vuông. Tính diện tích tam giác ABC. b) Tìm tọa độ H là hình chiếu vuông góc của A trên đường thẳng BC. c) Tìm tọa độ điểm D trên trục tung và có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Giải các phương trình và hệ phương trình sau. + Cho biết sin x = 2/9 (90 < x < 180). Tính cos x; tan x; cot2 (180 – x).
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Giồng Ông Tố - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Giồng Ông Tố, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Giồng Ông Tố – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1;4), B(-2;-1), C(3;1). 1) Tính chu vi tam giác ABC. 2) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. 3) Tìm trên trục hoành điểm P sao cho tổng khoảng cách từ P tới hai điểm A và B là nhỏ nhất. + Cho tam giác ABC có BC = 9, AB = 7 và AC = 8. Tính bán kính đường tròn nội tiếp tam giác ABC. + Cho hàm số y = ax2 + bx + 2 có đồ thị là (P). Tìm phương trình của (P).
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Diên Hồng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Diên Hồng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THCS&THPT Diên Hồng – TP HCM : + Xác định Parabol (P): y = ax2 + bx + c có đồ thị hàm số như hình vẽ sau. + Giải các phương trình và hệ phương trình sau. + Tìm tất cả các giá trị thực của tham số m để phương trình vô nghiệm.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phạm Văn Sáng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phạm Văn Sáng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phạm Văn Sáng – TP HCM : + Xác định parabole (P): y = ax2 + 6x + c qua C(2;5) và có trục đối xứng x = 1. + Trong mặt phẳng tọa độ Oxy, cho ∆ABC biếtA(-3;1), B (3;3), C(4;0). a) Chứng minh ∆ABC vuông. b) Tìm tọa độ điểm D sao cho DBAC là hình bình hành. c) Gọi H là hình chiếu vuông góc của B lên đường thẳng AC. Tìm tọa độ điểm H. + Với những giá trị nào của m thì phương trình x2 + 2(m – 4)x + m2 – 2 = 0 có hai nghiệm x1, x2 thỏa 3x1x2 + x1^2 + x2^2 = 18.