Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề biểu đồ hình quạt tròn lớp 7 môn Toán

Nội dung Chuyên đề biểu đồ hình quạt tròn lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề biểu đồ hình quạt tròn lớp 7 môn Toán Chuyên đề biểu đồ hình quạt tròn lớp 7 môn Toán Đối với học sinh lớp 7, chuyên đề biểu đồ hình quạt tròn là một phần quan trọng trong chương trình môn Toán. Tài liệu này bao gồm 88 trang, cung cấp tóm tắt lí thuyết và hướng dẫn cách giải các dạng bài tập liên quan đến biểu đồ hình quạt tròn. Phần đầu tiên của tài liệu là TÓM TẮT LÍ THUYẾT. Trong đó, biểu đồ hình quạt tròn được mô tả như một cách biểu diễn đối tượng thống kê thông qua các hình quạt tròn. Số liệu thống kê được ghi ở từng phần trăm trên biểu đồ và tổng số phần trăm này luôn đạt 100%. Phần tiếp theo là CÁC DẠNG BÀI TẬP. Dạng 1 yêu cầu học sinh đọc, mô tả và biểu diễn dữ liệu thành thạo trên biểu đồ hình quạt tròn. Họ cần lựa chọn cách biểu diễn phù hợp nhất để thể hiện thông tin. Dạng 2 đề cập đến việc phân tích và xử lý dữ liệu, nhận diện vấn đề và quy luật dựa trên các số liệu ở biểu đồ hình quạt tròn. Phần cuối cùng là BÀI TẬP TƯƠNG TỰ, nơi học sinh có cơ hội thực hành và kiểm tra kiến thức của mình. Qua đó, họ có thể áp dụng những kiến thức đã học vào những bài tập tương tự và mở rộng kiến thức của mình. Trong tổng thể, tài liệu này cung cấp cho học sinh lớp 7 một cách tiếp cận rõ ràng và thực hành linh hoạt với chuyên đề biểu đồ hình quạt tròn trong môn Toán, giúp họ phát triển kỹ năng phân tích số liệu và tư duy logic một cách thông minh và hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề đại lượng tỉ lệ nghịch Toán 7
Tài liệu gồm 41 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 1.1 Biểu diễn mối quan hệ tỉ lệ nghịch, xác định hệ số. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Nếu viết 1 y k x (k khác 0) thì có tương ứng mới y tỉ lệ thuận với 1 x theo hệ số tỉ lệ k. – Hệ số tỉ lệ k là k x y. Dạng 1.2 Tìm các đại lượng chưa biết. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Dùng công thức k y x để xác định tương quan tỉ lệ nghịch giữa hai đại lượng và xác định hệ số tỉ lệ. – Nếu hai đại lượng tỉ lệ nghịch với nhau thì: 2 x y k. Dạng 1.3 Kiểm tra xem các đại lượng có tỉ lệ nghịch với nhau không? – Trong mỗi công thức k y x (k khác 0), với mỗi giá trị của x cho tương ứng một giá trị của y. – Kiểm tra nếu có tỉ lệ 1 2 x y k thì hai đại lượng y và x tỉ lệ nghịch với nhau. Dạng 1.4 Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch và xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. – Để lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch ta thực hiện theo hai bước sau: + Bước 1. Xác định hệ số tỉ lệ k. + Bước 2. Dùng công thức xy k tìm các giá trị tương ứng của x và y. – Để xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. Ta xét xem tất cả tích các giá trị tương ứng của hai đại lượng có bằng nhau hay không: + Nếu tích bằng nhau thì các đại lượng tỉ lệ nghịch. + Nếu tích không bằng nhau thì các đại lượng không tỉ lệ nghịch. Dạng 2 . Một số bài toán tỉ lệ nghịch. 1. Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượng và quan hệ giữa chúng là hai đại lượng tỉ lệ nghịch. + Bước 2: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. 2. Bài toán tìm hai số biết chúng tỉ lệ nghịch với a và b. – Giả sử cần tìm hai số x và y biết chúng tỉ lệ nghịch với a và b (a và b là các số đã biết). Khi đó ta có ax by. Từ đó dựa vào điều kiện của x và y ta áp dụng tính chất dãy tỉ số bằng nhau một cách hợp lý để giải quyết bài toán. – Chú ý: Nếu hai số x và y tỉ lệ nghịch với a và b thì hai số x và y tỉ lệ thuận với 1 a và 1 b. Dạng 2.1 Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượngvà đặt ẩn phụ cho các đại lượng nếu cần. + Bước 2: Xác định quan hệ tỉ lệ nghịch giữa hai đại lượng tỉ lệ nghịch. + Bước 3: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. Dạng 2.2 Bài toán về nhiều đại lượng tỉ lệ nghịch. – Giả sử cần tìm hai số x y z t tỉ lệ nghịch với các số a b c d. Khi đó ta có ax by cz dt. – Tìm BCNN (a b c d e) rồi chia quan hệ ax by cz dt cho số vừa tìm được. – Áp dụng tính chất của dãy tỉ số bằng nhau rút x y z t. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề đại lượng tỉ lệ thuận Toán 7
Tài liệu gồm 23 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ thuận trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. 1. Định nghĩa: Nếu hai đại lượng y và x liên hệ với nhau bởi công thức y kx với k là hằng số khác 0 thì y tỉ lệ thuận với x theo hệ số tỉ lệ k. 2. Tính chất: Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k thì: n y k x 2 2. 3. Bổ sung: + Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k 0 thì x tỉ lệ thuận với y theo hệ số tỉ lệ 1 k. + Nếu z tỉ lệ thuận với y theo hệ số tỉ lệ 1 k y tỉ lệ thuận với x theo hệ số tỉ lệ 2 k thì z tỉ lệ thuận với x theo hệ số tỉ lệ 1 2 k. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Xác định hai đại lượng tỉ lệ thuận, hệ số tỉ lệ và các giá trị tương ứng của chúng. + Vận dụng định nghĩa: Đại lượng y tỉ lệ thuận với đại lượng x khi y kx (k là hằng số khác 0). Hệ số tỉ lệ y k x. Dạng 2 . Toán thực tế liên quan đến đại lượng tỉ lệ thuận. + Để giải toán về đại lượng tỉ lệ thuận, trước hết ta cần xác định tương quan tỉ lệ thuận giữa hai đại lượng, rồi áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận: 2 2 x y a x. Và tính chất của tỉ lệ thức: a c ad bc b d. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tỉ lệ thức Toán 7
Tài liệu gồm 38 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tỉ lệ thức trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Lập tỉ lệ thức. + Tỉ lệ thức a c b d còn được viết là a b c d, từ đó thay tỉ số giữa các số hữu tỉ thành tỉ số giữa các số nguyên. + Dựa vào định nghĩa nếu có a c b d thì tỉ số a b và c d lập thành được một tỉ lệ thức. + Nếu ad bc và a b c d đều khác 0 thì ta có các tỉ lệ thức a c b d. + Để lập tỉ lệ thức từ các số đã cho ta cần xác định bộ bốn số a b c d sao cho ad bc rồi áp dụng tính chất 2 của tỉ lệ thức để lập được 4 tỉ lệ thức. Dạng 2. Tìm số chưa biết của một tỉ lệ thức. + Từ tỉ lệ thức a c b d suy ra bc a d hoặc từ tỉ lệ thức a : b c : d suy ra bc a d. Dạng 3. Các bài tập ứng dụng. + Tỉ lệ thức a c b d còn được viết là a b c d. + Dựa vào định nghĩa nếu có a c b d thì tỉ số a b và c d lập thành được một tỉ lệ thức. Dạng 4. Chứng minh đẳng thức. + Từ tỉ lệ thức a c k b d suy ra a bk c dk. + Từ tỉ lệ thức a c b d suy ra 1 1 a c b d. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề biểu đồ đoạn thẳng Toán 7
Tài liệu gồm 67 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề biểu đồ đoạn thẳng trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. Biểu đồ đoạn thẳng thường được dùng để biểu diễn sự thay đổi của một đại lượng theo thời gian. Các thành phần của biểu đồ đoạn thẳng gồm: – Trục ngang biểu diễn đại lượng ta đang quan tâm (số dân). – Trục đứng biểu diễn (năm). – Mỗi điểm biểu diễn giá trị của đại lượng tại một thời điểm. – Hai điểm liên tiếp được nối với nhau bằng một đoạn thẳng. – Tiêu đề của biểu đồ thường ở dòng trên cùng. – Dựa vào biểu đồ đoạn thẳng, ta có thể xác định xu hướng tăng hoặc giảm của số liệu trong một khoảng thời gian nhất định. PHẦN II . CÁC DẠNG BÀI TẬP. Dạng 1 : Đọc biểu đồ đoạn thẳng. – Biết quan sát biểu đồ đoạn thẳng. – Các đầu mút của mỗi đoạn thẳng dóng xuống trục nằm ngang ứng với một điểm, điểm đó cho ta biết dữ liệu. – Các đầu mút của mỗi đoạn thẳng dóng ngang sang trục thẳng đứng ứng với một điểm, điểm đó cho ta biết dữ liệu. Dạng 2 : Vẽ biểu đồ đoạn thẳng. Để vẽ biểu đồ đoạn thẳng, ta thực hiện theo các bước sau: – Bước 1: Vẽ trục ngoang và trục đứng. Đánh dấu thời gian trên trục ngang, chọn đơn vị trên trục đứng. – Bước 2: Chấm các điểm biểu diễn giá trị của đại lượng theo thời gian. Có thể thay dấu chấm bằng các dấu định dạng khác. – Bước 3: Nối các điểm liên tiếp với nhau bằng đoạn thẳng. – Bước 4: Ghi chú thích cho các trục, điền giá trị tại các điểm (nếu cần) và ghi tiêu đề cho biểu đồ. PHẦN III . BÀI TẬP TƯƠNG TỰ.