Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 2 liên trường THPT - Nghệ An

Chiều thứ Bảy ngày 20 tháng 04 năm 2019, một số trường THPT thuộc sở GD&ĐT Nghệ An đã liên kết cùng nhau tổ chức kỳ thi thử THPT Quốc gia môn Toán năm 2019 dành cho học sinh khối 12, kỳ thi nhằm giúp các em tiếp tục củng cố và rèn luyện, kiểm nghiệm lại các kiến thức Toán THPT đã ôn tập trong quá trình chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi thử Toán THPT Quốc gia 2019 lần 2 liên trường THPT – Nghệ An có mã đề 101, đề gồm 06 trang với 50 câu trắc nghiệm, học sinh làm bài thi trong thời gian 90 phút, đề có cấu trúc và độ khó tương tự đề tham khảo THPT Quốc gia môn Toán năm học 2018 – 2019, đề thi có đáp án và lời giải chi tiết, lời giải được biên soạn bởi tập thể quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 2 liên trường THPT – Nghệ An : + Đầu mỗi tháng chị Tâm gửi vào ngân hàng 3.000.000 đồng theo hình thức lãi kép với lãi suất là 0,6% một tháng. Biết rằng ngân hàng chỉ tất toán vào cuối tháng và lãi suất ngân hàng không thay đổi trong thời gian chị Tâm gửi tiền. Hỏi sau ít nhất bao nhiêu tháng kể từ khi bắt đầu gửi thì chị Tâm có được số tiền cả lãi và gốc không ít hơn 50.000.000 đồng? [ads] + Trong một hộp có chứa các tấm bìa dạng hình chữ nhật có kích thước đôi một khác nhau, các cạnh của hình chữ nhật có kích thước là m và n (m, n thuộc N, 1 ≤ m, n ≤ 20, đơn vị là cm). Biết rằng mỗi bộ kích thước (m, n) đều có tấm bìa tương ứng. Ta gọi một tấm bìa là “tốt” nếu tấm bìa đó có thể được lắp ghép từ các miếng bìa dạng hình chữ L gồm 4 ô vuông, mỗi ô có độ dài cạnh là 1cm để tạo thành nó (Xem hình vẽ minh họa một tấm bìa “tốt” bên dưới). Rút ngẫu nhiên một tấm bìa từ hộp, tính xác suất để tấm bìa vừa rút được là tấm bìa “tốt”. + Cho f(x) là một đa thức hệ số thực có đồ thị của hàm số y = f'(x) như hình vẽ bên dưới: Hàm số g(x) = (1 – m)x + m^2 – 3 (m thuộc R) thỏa mãn tính chất: mọi tam giác có độ dài ba cạnh là a, b, c thì các số g(a), g(b), g(c) cũng là độ dài ba cạnh của một tam giác. Khẳng định nào sau đây là đúng về hàm số y = f[(mx + m – 1)^2] – e^(mx + 1)?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 1 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GD&ĐT Bình Phước : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 9 và điểm A 2 1 2. Từ A kẻ ba tiếp tuyến bất kì AM AN AP đến S. Gọi T là điểm thay đổi trên mặt phẳng MNP sao cho từ T kẻ được hai tiếp tuyến vuông góc với nhau đến S và cả hai tiếp tuyến này đều nằm trong MNP. Khoảng cách từ T đến giao điểm của đường thẳng 1 2 1 3 x t y t z t với mặt phẳng MNP có giá trị nhỏ nhất là? + Cho hàm số y f x có đạo hàm là 2 2 f x x x x x 2. Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số 1 2 6 2 f x x m có 5 điểm cực trị. Tính tổng tất cả các phần tử của S. + Trên parabol 2 P y x lấy hai điểm A B 1 1 2 4. Gọi M là điểm trên cung AB của P sao cho diện tích của tam giác AMB lớn nhất. Biết chu vi tam giác MAB là a b c2 5 29 khi đó giá trị a b c bằng?
Đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần thứ hai trường THPT Hai Bà Trưng, tỉnh Thừa Thiên Huế (mã đề 132). Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng – TT Huế : + Cho hàm số ƒ(x) = ax4 + bx3 + cx2 + dx + e với a b c d e là các số thực. Đồ thị của hai hàm số y = f'(x) và y= f”(x) cắt nhau tại các điểm trong đó có hai điểm là M N (tham khảo hình vẽ). Biết diện tích miền gạch chéo bằng 8. Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = f'(x) và y = f”(x). + Trong không gian Oxyz cho hai mặt phẳng (P): 3x – 4z + 8 = 0 và mặt phẳng (Q): 3x – 4z – 12 = 0. Gọi (S) là mặt cầu đi qua gốc tọa độ O và tiếp xúc với cả hai mặt phẳng (P) và (Q). Biết rằng khi (S) thay đổi thì tâm của nó luôn nằm trên một đường tròn (C) có tâm H(a;b;c), bán kính r. Tính T. + Trên tập hợp các số phức, xét phương trình z2 – 2z + m²  = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình đó có hai nghiệm phân biệt z1 và z2 thỏa mãn.
Đề thi thử TN THPT 2022 môn Toán trường chuyên Phan Bội Châu - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT chuyên Phan Bội Châu, thành phố Vinh, tỉnh Nghệ An (mã đề 002). Trích dẫn đề thi thử TN THPT 2022 môn Toán trường chuyên Phan Bội Châu – Nghệ An : + Cho hàm số y = f(x) là hàm đa thức bậc bốn, có đồ thị nhận đường thẳng x = -3,5 làm trục đối xứng. Biết diện tích hình phẳng của phần giới hạn bởi đồ thị hàm số y = f(x), y = f'(x) và hai đường thẳng x = -5, x = -2 có giá trị là 127/50 (hình vẽ bên). Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục hoành bằng? + Từ một tấm tôn hình tam giác đều cạnh bằng 6m, ông A cắt thành một tấm tôn hình chữ nhật và cuộn lại được một cái thùng hình trụ (như hình vẽ). Ông A làm được cái thùng có thể tích tối đa là V (vật liệu làm nắp thùng coi không liên quan). Giá trị của V thỏa mãn? + Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A1B1C1 có A1(3;-1;1), hai đỉnh B và C thuộc trục Oz và AA1 = 1 (C không trùng O). Biết u = (a;b;1) là một véctơ chỉ phương của đường thẳng A1C. Giá trị của a2 + b2 bằng?
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Trần Quốc Tuấn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán lần 2 năm học 2021 – 2022 trường THPT Trần Quốc Tuấn, tỉnh Quảng Ngãi; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008 009 010 011 012. Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Trần Quốc Tuấn – Quảng Ngãi : + Trong không gian với hệ tọa độ Oxyz cho các mặt phẳng P x y z  2 2 1 0 Q x y z 2 2 1 0. Gọi S là mặt cầu có tâm thuộc trục hoành, đồng thời S cắt mặt phẳng P theo giao tuyến là một đường tròn có bán kính bằng 3 và S cắt mặt phẳng Q theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu S thỏa yêu cầu. + Một hộp đựng 15 viên bi khác nhau trong đó có 8 viên bi xanh, 5 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp trên. Tính xác suất để trong 6 viên bi lấy ra có ít nhất 1 viên màu vàng và không quá 4 viên bi đỏ. + Trong không gian với hệ tọa độ Oxyz cho mặt phẳng đi qua điểm M 1 2 3 và cắt các tia Ox Oy Oz lần lượt tại A B C sao cho độ dài OA OB OC theo thứ tự tạo thành một cấp số nhân có công bội bằng 3. Tính khoảng cách từ gốc tọa độ O tới mặt phẳng.