Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập tỉ lệ thức và đại lượng tỉ lệ Toán 7 KNTTVCS

Tài liệu gồm 84 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề tỉ lệ thức và đại lượng tỉ lệ trong chương trình môn Toán 7 bộ sách Kết Nối Tri Thức Với Cuộc Sống. Bài 20 . TỈ LỆ THỨC 1. A Trọng tâm kiến thức 1. 1. Tỉ lệ thức 1. 2. Tính chất của tỉ lệ thức 1. B Các dạng bài tập 1. + Dạng 1. Nhận biết tỉ số – Tỉ lệ thức 1. + Dạng 2. Tìm số chưa biết trong tỉ lệ thức 3. + Dạng 3. Lập tỉ lệ thức từ các số hoặc đẳng thức cho trước 4. + Dạng 4. Chứng minh tỉ lệ thức 6. + Dạng 5. Các bài toán thực tế sử dụng tỉ lệ thức 7. C Bài tập vận dụng 8. D Bài tập nâng cao 13. Bài 21 . TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU 17. A Trọng tâm kiến thức 17. 1. Tính chất của dãy hai tỉ số bằng nhau 17. 2. Mở rộng tính chất cho dãy tỉ số bằng nhau 17. B Các dạng bài tập 17. + Dạng 1. Sử dụng tính chất dãy tỉ số bằng nhau để tìm các đại lượng chưa biết 17. + Dạng 2. Chứng minh tỉ lệ thức. Tính giá trị biểu thức 21. + Dạng 3. Áp dụng tính chất của dãy hai tỉ số bằng nhau để giải bài toán khác 21. C Bài tập vận dụng 23. D Bài tập nâng cao 27. Bài 22 . ĐẠI LƯỢNG TỈ LỆ THUẬN 35. A Trọng tâm kiến thức 35. 1. Đại lượng tỉ lệ thuận 35. 2. Tính chất 35. 3. Một số bài toán về đại lượng tỉ lệ thuận 35. B Các dạng bài tập 35. + Dạng 1. Nhận biết đại lượng tỉ lệ thuận 35. + Dạng 2. Tìm giá trị của một đại lượng tỉ lệ thuận khi biết giá trị của đại lượng kia 37. + Dạng 3. Giải bài toán thực tế về hai đại lượng tỉ lệ thuận 38. + Dạng 4. Chia một số M thành những phần x, y, z tỉ lệ thuận với các số a, b, c cho trước 40. C Bài tập vận dụng 41. D Bài tập nâng cao 49. Bài 23 . ĐẠI LƯỢNG TỈ LỆ NGHỊCH 54. A Trọng tâm kiến thức 54. 1. Đại lượng tỉ lệ nghịch 54. 2. Tính chất 54. 3. Một số bài toán về đại lượng tỉ lệ nghịch 54. B Các dạng bài tập 54. + Dạng 1. Nhận biết đại lượng tỉ lệ nghịch 54. + Dạng 2. Tìm giá trị của một đại lượng tỉ lệ nghịch khi biết giá trị của đại lượng kia 56. + Dạng 3. Giải bài toán thực tế về hai đại lượng tỉ lệ nghịch 59. + Dạng 4. Chia một số M thành những phần x, y, z tỉ lệ nghịch với các số a, b, c cho trước 62. C Bài tập vận dụng 63. D Bài tập nâng cao 70. ÔN TẬP CHƯƠNG VI 74. A Bài tập rèn luyện 74. B Bài tập bổ sung 79.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép cộng và phép trừ đa thức một biến lớp 7 môn Toán
Nội dung Chuyên đề phép cộng và phép trừ đa thức một biến lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề phép cộng và phép trừ đa thức một biến lớp 7 môn Toán Chuyên đề phép cộng và phép trừ đa thức một biến lớp 7 môn Toán Bài viết này trình bày về tài liệu với 31 trang, tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề phép cộng và phép trừ đa thức một biến trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT: Để cộng hoặc trừ hai đa thức một biến, có thể thực hiện theo cách cộng, trừ đa thức đã học hoặc sắp xếp các hạng tử theo cùng lũy thừa của biến và thực hiện phép tính theo cột dọc tương tự như cộng, trừ các số. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Cộng trừ đa thức một biến: Bước 1 viết phép tính A B, bước 2 nhóm các hạng tử cùng bậc rồi thu gọn, bước 3 thực hiện phép tính. Dạng 2: Tìm biểu thức, tính giá trị biểu thức: Áp dụng quy tắc chuyển vế và quy tắc cộng trừ đa thức một biến để tìm đa thức M chưa biết. Dạng 3: Các bài toán thực tế giải bằng cách lập đa thức: Vận dụng kiến thức về tính chu vi diện tích hình và các tính toán thông thường để lập mối quan hệ giữa các đại lượng và tìm ra các đại lượng bằng cách cộng trừ đa thức. PHẦN III. BÀI TẬP TỰ LUYỆN: Bài tập tự luyện giúp học sinh ôn tập và củng cố kiến thức về chuyên đề phép cộng, phép trừ đa thức một biến, từ đó nắm vững cách giải các dạng bài tập.
Chuyên đề đa thức một biến lớp 7 môn Toán
Nội dung Chuyên đề đa thức một biến lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề đa thức một biến lớp 7 môn Toán Chuyên đề đa thức một biến lớp 7 môn Toán Để hiểu rõ về đa thức một biến trong môn Toán lớp 7, chúng ta cần nắm vững một số kiến thức cơ bản sau đây. Đa thức một biến là tổng của những đơn thức của cùng một biến, mỗi đơn thức trong tổng là một hạng tử của đa thức. Không chỉ các đơn thức, số 0 cũng được xem là một đa thức không. Khi biểu diễn đa thức, chúng ta thường sử dụng chữ cái in hoa làm kí hiệu. Để thu gọn và sắp xếp đa thức một biến, chúng ta cần phải tính toán phép cộng các đơn thức cùng bậc và sắp xếp các hạng tử theo lũy thừa giảm của biến. Bậc của đa thức là bậc của hạng tử có bậc cao nhất, hệ số cao nhất là hệ số của hạng tử có bậc cao nhất và hệ số tự do là hệ số của hạng tử có bậc 0. Để tính giá trị của đa thức, chúng ta cần thực hiện các bước sau: thu gọn, sắp xếp đa thức theo lũy thừa giảm dần của biến, thay giá trị cụ thể của biến vào đa thức và thực hiện phép tính, sau đó kết luận. Nếu muốn tìm nghiệm của đa thức, ta có thể thực hiện phương pháp so sánh giá trị đa thức với 0 để tìm ra các nghiệm của đa thức đó. Những kiến thức và kỹ năng này sẽ giúp bạn hiểu rõ hơn về chuyên đề đa thức một biến trong môn Toán lớp 7. Hãy ôn tập và thực hành các bài tập để nắm vững kiến thức và rèn luyện kỹ năng tính toán của mình.
Chuyên đề đại lượng tỉ lệ nghịch lớp 7 môn Toán
Nội dung Chuyên đề đại lượng tỉ lệ nghịch lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề đại lượng tỉ lệ nghịch lớp 7 môn Toán Chuyên đề đại lượng tỉ lệ nghịch lớp 7 môn Toán Bộ tài liệu này bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán lớp 7. Phần 1: Tóm tắt lí thuyết Trong phần này, chúng ta sẽ tìm hiểu về các công thức và tính chất liên quan đến tỉ lệ nghịch giữa các đại lượng. Các khái niệm cơ bản như hệ số tỉ lệ, biểu diễn mối quan hệ tỉ lệ, và cách xác định các đại lượng chưa biết sẽ được giải thích chi tiết. Phần 2: Các dạng bài tập Trong phần này, chúng ta sẽ làm quen với các dạng bài tập phổ biến liên quan đến tỉ lệ nghịch. Các bài tập bao gồm việc áp dụng các công thức, xác định quan hệ tỉ lệ nghịch giữa các đại lượng, tìm các đại lượng chưa biết, và kiểm tra tính tỉ lệ nghịch giữa chúng. Cụ thể, bạn sẽ gặp các dạng sau: Dạng 1: Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 2: Bài toán về hai đại lượng tỉ lệ nghịch, bài toán tìm hai số biết chúng tỉ lệ nghịch với các số đã biết, và bài toán về nhiều đại lượng tỉ lệ nghịch. Phần 3: Bài tập tự luyện Trong phần này, bạn sẽ có cơ hội tự rèn luyện kỹ năng giải các bài tập liên quan đến đại lượng tỉ lệ nghịch. Các bài tập ở mức độ từ cơ bản đến nâng cao sẽ giúp bạn củng cố kiến thức và làm quen với việc áp dụng chúng vào thực tế. Với bộ tài liệu này, hy vọng rằng bạn sẽ nắm vững kiến thức về đại lượng tỉ lệ nghịch và có thể áp dụng chúng linh hoạt vào việc giải các bài tập liên quan. Chúc bạn học tốt!
Chuyên đề đại lượng tỉ lệ thuận lớp 7 môn Toán
Nội dung Chuyên đề đại lượng tỉ lệ thuận lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề đại lượng tỉ lệ thuận lớp 7 môn ToánPHẦN I. TÓM TẮT LÍ THUYẾTPHẦN II. CÁC DẠNG BÀIPHẦN III. BÀI TẬP TỰ LUYỆN Chuyên đề đại lượng tỉ lệ thuận lớp 7 môn Toán Tài liệu này bao gồm 23 trang, giúp học sinh nắm vững lí thuyết và cách giải các dạng bài tập chuyên đề về đại lượng tỉ lệ thuận trong chương trình Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT 1. Định nghĩa: Khi hai đại lượng y và x có mối liên hệ theo công thức y = kx với k khác 0, thì y tỉ lệ thuận với x theo hệ số tỉ lệ k. 2. Tính chất: Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k, thì nếu y1/y2 = k thì x1/x2 = k. 3. Bổ sung: - Nếu y tỉ lệ thuận với x theo hệ số k khác 0, thì x tỉ lệ thuận với y với hệ số 1/k. - Nếu z tỉ lệ thuận với y theo hệ số 1/k và y tỉ lệ thuận với x theo hệ số 2/k, thì z tỉ lệ thuận với x theo hệ số 2/k. PHẦN II. CÁC DẠNG BÀI 1. Dạng 1: Xác định hai đại lượng tỉ lệ thuận, hệ số tỉ lệ và các giá trị tương ứng của chúng. - Áp dụng định nghĩa: y tỉ lệ thuận với x khi y = kx (k khác 0). - Hệ số tỉ lệ: y = kx. 2. Dạng 2: Áp dụng vào bài toán thực tế liên quan đến đại lượng tỉ lệ thuận. - Để giải bài toán về tỉ lệ thuận, cần xác định mối quan hệ tỉ lệ giữa hai đại lượng, sau đó áp dụng tính chất về tỉ số giữa các giá trị của hai đại lượng tỉ lệ thuận: x1/x2 = y1/y2. Và áp dụng tính chất của tỉ lệ thức: (a/c) / (b/d) = ad / bc. PHẦN III. BÀI TẬP TỰ LUYỆN Tài liệu cũng cung cấp bài tập tự luyện để học sinh ôn tập và nâng cao kiến thức về chuyên đề đại lượng tỉ lệ thuận trong môn Toán lớp 7.