Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: 1. Trần Ngọc Hùng; 2. Ngụy Như Thái; 3. Quảng Đại Hạn; 4. Quảng Đại Phước; 5. Đàng Xuân Phi; 6. Quảng Đại Mưa; 7. Nguyễn Văn Hồng … hướng dẫn phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán. PHẦN 1 : MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. A Khung ma trận. B Bảng mô tả chi tiết nội dung câu hỏi. Câu 1 (2D4Y1-1). Xác định các yếu tố cơ bản của số phức. Câu 2 (2H3Y1-3). Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Câu 3 (2D1Y5-8). Câu hỏi lý thuyết. Câu 4 (2H2Y2-1). Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Câu 5 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 6 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 7 (2D2Y6-1). Bất phương trình cơ bản. Câu 8 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 9 (2D2Y2-1). Tập xác định của hàm số chứa hàm lũy thừa. Câu 10 (2D2Y5-1). Phương trình cơ bản. Câu 11 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 12 (2D4Y2-1). Thực hiện phép tính. Câu 13 (2H3Y2-2). Xác định VTPT. Câu 14 (2H3Y1-1). Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục. Câu 15 (2D4Y1-2). Biểu diễn hình học cơ bản của số phức. Câu 16 (2D1Y4-1). Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Câu 17 (2D2Y3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 18 (2D1Y5-1). Nhận dạng đồ thị, bảng biến thiên. Câu 19 (2H3Y3-3). Tìm tọa độ điểm liên quan đến đường thẳng. Câu 20 (1D2Y2-1). Bài toán chỉ sử dụng P hoặc C hoặc A. Câu 21 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 22 (2D2Y4-2). Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Câu 23 (2D1Y1-2). Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Câu 24 (2H2Y1-2). Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao,. Câu 25 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 26 (1D3Y3-3). Tìm hạng tử trong cấp số cộng. Câu 27 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 28 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 29 (2D1B3-1). GTLN, GTNN trên đoạn [a ;b ]. Câu 30 (2D1B1-1). Xét tính đơn điệu của hàm số cho bởi công thức. Câu 31 (2D2B3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 32 (1H3B2-3). Xác định góc giữa hai đường thẳng (dùng định nghĩa). Câu 33 (2D3B2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 34 (2H3B3-7). Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Câu 35 (2D4B3-2). Xác định các yếu tố cơ bản của số phức qua các phép toán. Câu 36 (1H3B5-3). Khoảng cách từ một điểm đến một mặt phẳng. Câu 37 (1D2B5-4). Tính xác suất bằng công thức nhân. Câu 38 (2H3B3-2). Viết phương trình đường thẳng. Câu 39 (2D2K6-3). Phương pháp đặt ẩn phụ. Câu 40 (2D1K5-4). Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Câu 41 (2D3K1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 42 (2H1K3-4). Các bài toán khác(góc, khoảng cách,…) liên quan đến thể tích khối đa diện. Câu 43 (2D4K4-2). Định lí Viet và ứng dụng. Câu 44 (2D4G5-1). Phương pháp hình học tìm cực trị số phức. Câu 45 (2D3G3-1). Diện tích hình phẳng được giới hạn bởi các đồ thị. Câu 46 (2H3K3-2). Viết phương trình đường thẳng. Câu 47 (2H2K1-1). Thể tích khối nón, khối trụ. Câu 48 (2D2G6-5). Phương pháp hàm số, đánh giá. Câu 49 (2H2G2-6). Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Câu 50 (2D1G2-1). Tìm cực trị của hàm số cho bởi công thức. PHẦN 2 : PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. PHẦN 3 : BÀI TẬP CHO HỌC SINH RÈN LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu
Nội dung Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Bản PDF - Nội dung bài viết Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Tài liệu này gồm tổng cộng 33 trang, được soạn bởi thầy giáo Nguyễn Viết Hiếu. Được biên soạn nhằm mục đích tổng hợp công thức Toán THPT cho cả ba khối lớp 10, 11 và 12. Được thiết kế để giúp học sinh có thể dễ dàng tra cứu và áp dụng trong quá trình học và ôn thi tốt nghiệp THPT môn Toán. Dưới đây là một số chủ đề chính được nhấn mạnh trong tài liệu: Hàm số: Bao gồm các công thức và tính chất về hàm số. Hàm số mũ, hàm số lũy thừa, hàm số logarithm: Giúp học sinh hiểu rõ về các loại hàm số này. Nguyên hàm, tích phân, ứng dụng: Cung cấp kiến thức cơ bản về nguyên hàm và tích phân, cũng như ứng dụng của chúng trong thực tế. Số phức: Một chủ đề quan trọng trong Toán THPT. Thể tích khối đa diện, khối tròn xoay: Thực hành tính toán và giải bài tập liên quan đến các loại hình học đặc biệt. Không gian OXYZ, phép biến hình: Giúp học sinh hiểu rõ các khái niệm và tính chất của không gian và phép biến hình. Hình học không gian, đại số tổ hợp: Là những chủ đề chính trong tài liệu giúp nắm vững kiến thức cơ bản. Cấp số cộng, cấp số nhân, giới hạn, đạo hàm: Các công thức và phương pháp tính toán quan trọng trong Toán THPT. Tập hợp, hàm số, phương trình, biến phụ thuộc, thống kê, lượng giác: Cung cấp kiến thức đa dạng và phong phú. Vector, các phép toán vector, tích vô hướng: Những kiến thức hữu ích về vector và các phép toán liên quan. Hình Oxy: Thể hiện các tính chất và đặc điểm của hình học trên mặt phẳng Oxy. Tài liệu này sẽ là nguồn tư liệu hữu ích và đáng tin cậy để học sinh tự học và ôn thi Toán THPT một cách hiệu quả.
Phân tích, giải và xây dựng câu VD VDC trong đề TN THPT 2021 môn Toán (đợt 1)
Nội dung Phân tích, giải và xây dựng câu VD VDC trong đề TN THPT 2021 môn Toán (đợt 1) Bản PDF - Nội dung bài viết Tài liệu phân tích, giải và xây dựng câu VD - VDC trong đề TN THPT 2021 môn Toán (đợt 1) Tài liệu phân tích, giải và xây dựng câu VD - VDC trong đề TN THPT 2021 môn Toán (đợt 1) Tài liệu này bao gồm 60 trang và được biên soạn bởi nhóm giáo viên Toán Việt Nam. Mục đích chính của tài liệu là phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu VD - VDC trong đề thi tốt nghiệp THPT năm 2021 môn Toán đợt 1. Trong kỳ thi tốt nghiệp THPT đợt 1 năm 2021, buổi thi môn Toán sẽ diễn ra vào chiều ngày 7/8/2021. Bài thi gồm 24 mã đề được lấy từ 4 mã đề gốc là 101, 102, 103, 104. Nội dung đề thi dựa trên chương trình THPT, chủ yếu là chương trình lớp 12. Các câu hỏi được phân thành các mức độ khác nhau để kiểm tra kiến thức của học sinh từ lớp 11 đến lớp 12. Để giúp học sinh ôn tập cho kỳ thi tốt nghiệp THPT đợt 2 năm 2021 diễn ra vào 6/7/8/2021, tài liệu này cung cấp thông tin cần thiết để giúp học sinh nắm chắc kiến thức, tiếp cận bài toán mới, lạ và rèn luyện kỹ năng thi trắc nghiệm môn Toán.
Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng
Nội dung Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng Bản PDF - Nội dung bài viết Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng ĐăngMục lục tài liệu Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng Tài liệu này được biên soạn bởi thầy giáo Phạm Hoàng Đăng và bao gồm 63 trang. Được tạo ra để giúp học sinh tổng ôn và vận dụng các chuyên đề cao cấp trong kỳ thi tốt nghiệp THPT quốc gia môn Toán. Mục tiêu của tài liệu là giúp học sinh chinh phục mức điểm cao từ 8 đến 10 trong đề thi. Mục lục tài liệu Chuyên đề 1. KHẢO SÁT HÀM SỐ A. Tìm tham số để hàm số đơn điệu trên K. Ví dụ, bài tập và đáp án. B. Giá trị lớn nhất, nhỏ nhất của hàm hợp. Ví dụ, bài tập và đáp án. C. Đơn điệu và cực trị của hàm số hợp. Bài tập mẫu, tương tự và đáp án. Chuyên đề 2. Phương trình mũ và lôgarít A. Dạng phương trình cô lập tham số. Ví dụ, bài tập và đáp án. B. Bài toán sử dụng hàm đặc trưng. Ví dụ, bài tập và đáp án. Chuyên đề 3. NGUYÊN HÀM - TÍCH PHÂN A. Tích phân hàm số cho bởi nhiều công thức. Ví dụ, bài tập và đáp án. B. Tích phân kết hợp bằng cách đổi biến & từng phần. Ví dụ, bài tập và đáp án. C. Tích phân hàm ẩn. Ví dụ, bài tập và đáp án. D. Diện tích hình phẳng và thể tích vật thể tròn xoay. Ví dụ, bài tập và đáp án. Chuyên đề 4. SỐ PHỨC A. Xác định các thuộc tính của số phức. Ví dụ, bài tập và đáp án. B. Cực trị của biểu thức chứa mô-đun số phức. Ví dụ, bài tập và đáp án. Chuyên đề 5. HÌNH HỌC KHÔNG GIAN A. Góc giữa đường thẳng và mặt phẳng. Ví dụ, bài tập và đáp án. B. Thể tích có chứa dữ liệu góc. Ví dụ, bài tập và đáp án. C. Khoảng cách từ điểm đến mặt phẳng. Ví dụ, bài tập và đáp án. D. Khoảng cách giữa hai đường thẳng chéo nhau. Ví dụ, bài tập và đáp án. E. Góc giữa hai mặt phẳng. Ví dụ, bài tập và đáp án. F. Thể tích khối đa diện liên quan góc, khoảng cách. Ví dụ, bài tập và đáp án. G. Bài toán cực trị (thực tế) trong nón trụ cầu. Ví dụ, bài tập và đáp án. Chuyên đề 6. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN A. Phương trình mặt phẳng, đường thẳng. Ví dụ, bài tập và đáp án. B. Cực trị hình học Oxyz. Ví dụ, bài tập và đáp án.
10 chuyên đề ôn thi THPT QG môn Toán theo mức độ Phạm Hoàng Điệp
Nội dung 10 chuyên đề ôn thi THPT QG môn Toán theo mức độ Phạm Hoàng Điệp Bản PDF - Nội dung bài viết 10 chuyên đề ôn thi THPT QG môn Toán theo mức độ Phạm Hoàng ĐiệpPHẦN 1: ĐẠI SỐ VÀ GIẢI TÍCHPHẦN 2: HÌNH HỌC 10 chuyên đề ôn thi THPT QG môn Toán theo mức độ Phạm Hoàng Điệp Tài liệu ôn thi THPT QG môn Toán do Th.S Phạm Hoàng Điệp biên soạn bao gồm 542 trang, tập hợp 10 chuyên đề theo mức độ, giúp học sinh lớp 12 chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán được tổ chức bởi Bộ Giáo dục và Đào tạo. PHẦN 1: ĐẠI SỐ VÀ GIẢI TÍCH 1. Tổ hợp – Xác suất - Kiến thức cần nhớ: Bao gồm hai quy tắc đếm cơ bản, hoán vị, chỉnh hợp, tổ hợp và tính xác suất. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 2. Dãy số – Cấp số cộng – Cấp số nhân - Kiến thức cần nhớ: Bao gồm cấp số cộng và cấp số nhân. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 3. Hàm số - Kiến thức cần nhớ: Bao gồm các kiến thức về tính đơn điệu, điểm cực trị, giá trị lớn nhất/nhỏ nhất, tiệm cận, khảo sát đồ thị, điều kiện tương giao đồ thị, đạo hàm, bảng biến thiên. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 4. Lô-ga-rít - Kiến thức cần nhớ: Bao gồm các công thức giải phương trình – bất phương trình lô-ga-rít, hàm số mũ và lô-ga-rít, giới hạn, đạo hàm, áp dụng tính đơn điệu, lãi đơn và lãi kép. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 5. Nguyên hàm – Tích phân – Ứng dụng - Kiến thức cần nhớ: Bao gồm nguyên hàm, tích phân, phương pháp tính nguyên hàm, nguyên hàm của hàm ẩn, định nghĩa tích phân, phương pháp đổi biến số, tích phân từng phần. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 6. Số phức - Kiến thức cần nhớ: Bao gồm định nghĩa số phức, số phức liên hợp, phép toán, căn bậc hai của số thực âm, giải phương trình bậc hai. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. PHẦN 2: HÌNH HỌC 1. Góc và khoảng cách trong không gian - Kiến thức cần nhớ: Góc giữa đường thẳng, đường thẳng và mặt phẳng, hai mặt phẳng. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 2. Khối đa diện - Kiến thức cần nhớ: Thể tích khối chóp, lăng trụ, tỉ số thể tích, diện tích đa giác. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 3. Khối tròn xoay - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 4. Hình học không gian Oxyz - Kiến thức cần nhớ: Tọa độ vec-tơ và điểm, đường thẳng, mặt phẳng. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó.