Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh

Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Quảng Ninh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Cho tam giác đều ABC. Trên mỗi cạnh AB, BC, CA lần lượt lấy 4 điểm phân biệt và không điểm nào trùng với các đỉnh A, B, C. Hỏi lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập hợp 15 điểm đã cho (tính cả các điểm A, B, C)? + Một người chọn ngẫu nhiên một số điện thoại, trong đó mỗi số có mười chữ số và ba chữ số đầu cố định là 099. Số điện thoại này được gọi là may mắn nếu bốn chữ số tiếp theo là các chữ số chẵn đôi một khác nhau, ba chữ số cuối là các số lẻ và tổng ba chữ số này bằng 9. Tính xác suất để người đó nhận được số điện thoại may mắn. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB 3 BC 6 đường thẳng SA vuông góc với mặt phẳng ABCD. Điểm M thuộc đoạn BC sao cho 1 3 BM BC. Góc giữa đường thẳng SC và mặt phẳng SAB bằng 45°. a) Tính thể tích khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng SM và AC. c) Gọi H và K lần lượt là hình chiếu vuông góc của A trên SM và SC. Chứng minh hình chóp A.CMHK nội tiếp một mặt cầu. Tính bán kính mặt cầu đó.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, thời gian làm bài 180 phút.
Đề thi chọn HSG thành phố Toán 12 năm học 2017 - 2018 sở GD và ĐT Hải Phòng (Không chuyên)
Đề thi chọn HSG thành phố Toán 12 năm học 2017 – 2018 sở GD và ĐT Hải Phòng (Bảng không chuyên) gồm 7 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi : + Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại C. Gọi M, N lần lượt là trung điểm của A’C’ và BC. Biết AC = a, BC = a√3, số đo của góc tạo bởi hai mặt phẳng (ABC’) và (ABC) bằng 60 độ. a) Tính thể tích của khối lăng trụ ABC.A’B’C’ b) Tính diện tích thiết diện của lăng trụ ABC.A’B’C’ cắt bởi mặt phẳng (AMN) [ads] + Người ta dùng 18 cuốn sách bao gồm 7 cuốn sách Toán, 6 cuốn sách Vật lý và 5 cuốn sách Hoá học (các cuốn sách cùng loại giống nhau hoàn toàn) để làm phần thưởng cho 9 học sinh (trong đó có hai học sinh A và B), mỗi học sinh nhận được hai cuốn sách khác thể loại (không tính thứ tự các cuốn sách). Tính xác suất để hai học sinh A và B nhận được phần thưởng giống nhau. + Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, BC; điểm E(22/5, 11/5) là giao điểm của hai đường thẳng CM và DN. Gọi H là trung điểm của DE, đường thẳng AH cắt cạnh CD tại P(7/2; 1). Tìm toạ độ điểm A, biết hoành độ điểm A nhỏ hơn 4.
Đề thi chọn HSG lớp 12 cấp trường năm học 2017 - 2018 môn Toán trường Trần Hưng Đạo - Vĩnh Phúc
Đề thi chọn HSG lớp 12 cấp trường năm học 2017 – 2018 môn Toán trường THPT Trần Hưng Đạo – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có A(5, -7), điểm C thuộc đường thẳng có phương trình (d1): x – y + 4 = 0. Đường thẳng đi qua D và trung điểm của đoạn AB có phương trình (d2): 3x – 4y – 23 = 0. Tìm tọa độ của B và C, biết điểm B có hoành độ dương. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc BAD = 60 độ, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với điểm G là trọng tâm tam giác BCD. Góc giữa SA và mặt phẳng (ABCD) bằng 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DC và SA theo a. + Cho A là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các chữ số 0, 2, 3, 5, 6, 8. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được có chữ số 0 và chữ số 5 không đứng cạnh nhau.
Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cao Bằng
Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cao Bằng gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một trường trung học phổ thông có 12 học sinh giỏi gồm ba học sinh khối 10, bốn học sinh khối 11 và năm học sinh khối 12. Chọn sáu học sinh trong số học sinh giỏi đó, tính xác suất sao cho cả ba khối đều có học sinh được chọn. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60 độ. [ads] a. Tính thể tích khối chóp S.ABCD b. Tính khoảng cách từ điểm D đến mặt phẳng (SBC) + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm M (-3; 0) là trung điểm của cạnh AB, điểm H(0; -1) là hình chiếu vuông góc của B trên AD và điểm G(4/3; 3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B, D.