Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá

Nội dung Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán để ôn thi tuyển sinh vào lớp 10 THPT năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào ngày 02 tháng 06 năm 2022. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán vào lớp 10 năm 2022 - 2023 của phòng GD&ĐT Thọ Xuân - Thanh Hoá: + Cho nửa đường tròn có tâm O, bán kính R, đường kính AB, I là điểm cố định thuộc đoạn thẳng OB. Vẽ đường thẳng d vuông góc với AB tại I, d cắt nửa đường tròn tại K. Lấy điểm M thuộc cung nhỏ BK, tia BM cắt đường thẳng d tại C, đoạn thẳng AM cắt đường thẳng d tại N, AC cắt nửa đường tròn tại D. a) Chứng minh tứ giác BMNI là tứ giác nội tiếp b) Chứng minh ba điểm B, N, D thẳng hàng và tính AD.AC + BM.BC theo R c) Chứng minh O’ luôn nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ KB. + Trong hệ trục tọa độ Oxy, cho parabol (P): y = 2x^2 và đường thẳng (d): y = (m + 1)x – m + 3 (m là tham số ) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B phân biệt với mọi giá trị của m b) Tìm giá trị m để 2y1 + 2y2 = (m + 1)x2 + 2 + 8. + Cho 3 số thực dương x, y, z thỏa mãn: x^2 + y^2 + z^2 = 1. Tìm giá trị nhỏ nhất của biểu thức: 2x^2y^2z^2 + y^2z^2x^2 + z^2x^2y^2. Đề thi năm nay đòi hỏi kiến thức và sự sáng tạo của các em học sinh. Chúc các em có kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa.
Đề KSCL Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Như Thanh - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán học sinh dự thi vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Như Thanh – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = ax + (b – 1). Tìm a, b biết đường thẳng (d) đi qua điểm A(2;1) và cắt trục tung tại điểm có tung độ bằng -3. + Cho phương trình 2 2 x 6x 6m m 0 (với m là tham số). Tìm m để phương trình đã cho có hai nghiệm 1 x 2 x thỏa mãn: 33 2 12 1 1 x x 2x 12x 72 0. + Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C (C khác M). Kẻ MH vuông góc với BC (H thuộc BC). 1. Chứng minh rằng BOMH là tứ giác nội tiếp. 2. MB cắt OH tại E. Chứng minh ME.MH = BE.HC. 3. Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K (K khác M). Chứng minh rằng ba điểm C, K, E thẳng hàng.
Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 20 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán ôn thi vào 10 năm 2023 – 2024 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Cho đường thẳng (d y ax b). Tìm a b biết (d) cắt trục hoành tại điểm có hoành độ bằng 3 và (d) song song với đường thẳng y x 2 6. + Cho phương trình 2 2 x mx m 1 3 0 với m là tham số. Tìm m để phương trình đã cho có hai nghiệm phân biệt 1 x 2 x (x x 1 2) thỏa mãn 2 1 12 x x 3 13. + Cho đường tròn (O) đường kính AB cố định, trên đoạn OA lấy điểm I sao cho 2 3 AI OA. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN (C không trùng M, N, B). Nối AC cắt MN tại E. a) Chứng minh: Tứ giác IECB nội tiếp. b) Chứng minh: 2 AE AC AI IB AI và MA là tiếp tuyến đường tròn ngoại tiếp tam giác MEC. c) Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Đề KSCL Toán thi vào 10 năm 2023 - 2024 trường THPT Quảng Xương 4 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT Quảng Xương 4, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán thi vào 10 năm 2023 – 2024 trường THPT Quảng Xương 4 – Thanh Hoá : + Trong hệ toạ độ Oxy cho điểm A(2;2), đường thẳng dy x 4 và parabol 2 P y ax. Tìm a để parabol 2 P y ax đi qua điểm A. Với giá trị a tìm được, hãy xác định tọa độ điểm B là giao điểm thứ hai của (d) và (P). + Cho phương trình bậc hai 2 x xm 25 0 (m là tham số) 1) Giải phương trình khi m = 3. 2) Tìm giá trị của tham số m phương trình có 2 nghiệm 1 2 x x phân biệt và thỏa mãn 2 12 1 2 xx x m x 5 3 10115. + Từ một điểm M nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến MA MB (A B là tiếp điểm) và một cát tuyến qua M cắt đường tròn tại C D (C nằm giữa M và D). Gọi E là giao điểm của AB và OM. 1) Chứng minh tứ giác OAMB nội tiếp. 2) Chứng minh MC MD ME MO. 3) Giả sử OM R 3. Tìm diện tích lớn nhất của tứ giác MADB.