Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển Toán năm 2022 - 2023 trường Phổ thông Năng khiếu - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán năm học 2022 – 2023 trường Phổ thông Năng khiếu, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển Toán năm 2022 – 2023 trường Phổ thông Năng khiếu – TP HCM : + Tìm tất cả các số nguyên dương x, y thỏa mãn x > y > 2 và x^y – x = y^x – y. + Cho tam giác ABC nội tiếp đường tròn (O) có B, C cố định (BC không đi qua O), A là điểm thay đổi trên cung lớn BC. Gọi I, M, N là trung điểm của BC, CA và AB. Đường tròn qua M, tiếp xúc BC tại B và đường tròn qua N, tiếp xúc BC tại C lần lượt cắt IM và IN tại E và F. Gọi D là giao điểm của BE, CF. a) Chứng minh AD đi qua một điểm cố định. b) Gọi K là giao điểm của AD với EF. Chứng minh K thuộc một đường tròn cố định. + Với n nguyên dương, một tập hợp B = {b1, b2 … bn} gồm các số nguyên dương được gọi là “tốt” nếu tồn tại n tập hợp C1, C2 … Cn thỏa mãn đồng thời các điều kiện sau: Với mọi i thuộc {1, 2 … n}, các tập hợp Ci gồm bi số nguyên liên tiếp. Với mọi i thuộc {1, 2 … n}, nếu đặt ai là tổng tất cả các phần tử của Ci thì a1 + a2 + … + an = 0. a) Chứng minh rằng nếu B chứa ít nhất một số lẻ thì B là tập hợp tốt. b) Hỏi có bao nhiêu tập con khác rỗng của {1, 2 … 100} là tập tốt?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG cấp trường năm học 2017 2018 môn Toán trường Trần Hưng Đạo Vĩnh Phúc
Nội dung Đề thi chọn HSG cấp trường năm học 2017 2018 môn Toán trường Trần Hưng Đạo Vĩnh Phúc Bản PDF Đề thi chọn HSG lớp 12 cấp trường năm học 2017 – 2018 môn Toán trường THPT Trần Hưng Đạo – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có A(5, -7), điểm C thuộc đường thẳng có phương trình (d1): x – y + 4 = 0. Đường thẳng đi qua D và trung điểm của đoạn AB có phương trình (d2): 3x – 4y – 23 = 0. Tìm tọa độ của B và C, biết điểm B có hoành độ dương. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc BAD = 60 độ, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với điểm G là trọng tâm tam giác BCD. Góc giữa SA và mặt phẳng (ABCD) bằng 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DC và SA theo a. + Cho A là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các chữ số 0, 2, 3, 5, 6, 8. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được có chữ số 0 và chữ số 5 không đứng cạnh nhau.
Đề thi chọn HSG cấp huyện THPT năm học 2017 2018 môn Toán sở GD và ĐT Cao Bằng
Nội dung Đề thi chọn HSG cấp huyện THPT năm học 2017 2018 môn Toán sở GD và ĐT Cao Bằng Bản PDF Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cao Bằng gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một trường trung học phổ thông có 12 học sinh giỏi gồm ba học sinh khối 10, bốn học sinh khối 11 và năm học sinh khối 12. Chọn sáu học sinh trong số học sinh giỏi đó, tính xác suất sao cho cả ba khối đều có học sinh được chọn. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60 độ. [ads] a. Tính thể tích khối chóp S.ABCD b. Tính khoảng cách từ điểm D đến mặt phẳng (SBC) + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm M (-3; 0) là trung điểm của cạnh AB, điểm H(0; -1) là hình chiếu vuông góc của B trên AD và điểm G(4/3; 3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B, D.
Đề thi học sinh giỏi lớp 12 môn Toán năm học 2017 2018 trường THPT Đan Phượng Hà Nội
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2017 2018 trường THPT Đan Phượng Hà Nội Bản PDF Đề thi học sinh giỏi môn Toán lớp 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Thái Nguyên
Nội dung Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Thái Nguyên Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.