Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Ân Thi Hưng Yên

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Ân Thi Hưng Yên Bản PDF Bài thi học kỳ 1 môn Toán lớp 9 năm 2020 - 2021 tại phòng Giáo dục và Đào tạo Ân Thi, Hưng Yên đã diễn ra vào ngày ... tháng 12 năm 2020. Đề thi gồm 02 trang với tổng cộng 25 câu trắc nghiệm và 04 câu tự luận, được chia thành 2 phần: trắc nghiệm chiếm 05 điểm và tự luận chiếm 05 điểm, thời gian làm bài là 90 phút.

Một trong những câu hỏi trong bài thi đề cập đến việc tính vị trí tương đối của hai đường tròn, với bán kính lần lượt là 5cm và 3cm, và khoảng cách hai tâm là 7cm. Thí sinh phải chọn đúng giữa các phương án: không có điểm chung, tiếp xúc ngoài, tiếp xúc trong, hoặc cắt nhau tại hai điểm.

Câu hỏi khác liên quan đến việc lắp đường ống nước trên một đoạn đường dài 100m, với ống có độ dài 3m và 5m. Thí sinh cần xác định số cách lắp ống nước mà không bị cắt và các mối nối không đáng kể.

Ngoài ra, đề thi cũng đưa ra câu hỏi liên quan đến việc tính tiền công lắp đặt đường dây điện cho một ngôi nhà, với số tiền đã mua vật liệu là 30.000.000 đồng và tiền công là 400.000 đồng/ngày. Thí sinh cần tính số tiền mà người thợ điện sẽ được thanh toán sau một số ngày làm việc (bao gồm cả tiền vật liệu).

Bài thi đã đưa ra các câu hỏi vừa khó vừa thú vị, đòi hỏi sự tư duy logic và kiến thức chắc chắn từ các thí sinh. Đây là cơ hội để học sinh thể hiện khả năng và kiến thức của mình trong môn Toán, từ đó xác định được điểm số và kết quả học tập của mình.

Nguồn: sytu.vn

Đọc Sách

Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Hải Dương : + Cho hàm số bậc nhất: y = (m – 3)x + 2m – 5 (m là tham số và m khác 3) có đồ thị (d) a) Tìm điều kiện của m để hàm số đồng biến trên R. b) Tìm giá trị của m để đường thẳng (d) đi qua điểm A (-1;4). c) Tìm giá trị của m để hai đường thẳng (d) và (d’): y = 2x + 4 cắt nhau tại điểm có hoàng độ bằng -3/4. + Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Tia Ax nằm giữa AB và AO cắt đường tròn (O;R) tại hai điểm C và D (C nằm giữa A và D). Gọi M là trung điểm của dây CD, kẻ BH vuông góc với AO tại H. a) Tính OH.OA theo R. b) Cho ABC = ADB. Chứng minh AC.AD = AH.AO và CHO + CDO = 180° c) Qua C kẻ tiếp tuyến thứ hai với đường tròn (O) cắt OM tại E. Chứng minh ba điểm E, H, B thẳng hàng. + Cho a, b, c dương thỏa mãn 6a + 3b + 2c = abc. Tìm giá trị lớn nhất của biểu thức T.
Đề học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi được biên soạn theo cấu trúc 30% trắc nghiệm + 70% tự luận, thời gian làm bài 60 phút; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 12 năm 2022. Trích dẫn Đề học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9 cm, BC = 15 cm. Khi đó độ dài AH bằng? + Cho hàm số y = (m – 2)x + 11 (*) a) Tìm m để hàm số (*) đồng biến trên R. b) Tìm m để đồ thị hàm số (*) và đường thẳng y = x + m2 + 2 cắt nhau tại một điểm trên trục tung. + Cho đường tròn (O;3cm) và một điểm M sao cho OM = 5cm. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là hai tiếp điểm). Gọi I là giao điểm của OM và AB. a) Tính độ dài đoạn AM và giá trị tan của góc AMO. b) Chứng minh OM vuông góc AB tại I. c) Từ B kẻ đường kính BC của đường tròn (O), đường thẳng MC cắt đường tròn (O) tại D (D khác C). Chứng minh: MDO đồng dạng với MIC.
Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bến Cát - Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Bến Cát, tỉnh Bình Dương; đề thi dành cho học sinh các lớp 9 THCS Đại trà – chương trình Toán 9 chuẩn. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bến Cát – Bình Dương : + Cho hàm số y = − x có đồ thị (d1) và hàm số y = 1/2x + 1 có đồ thị (d2) a) Vẽ (d1), (d2) trên cùng mặt phẳng tọa độ Oxy b) Gọi A là giao điểm của hai đường thẳng (d1) và (d2). Tìm tọa độ giao điểm A bằng phép tính. c) Tìm m để đường thẳng y = (2m − 1)x + 2 đi qua điểm A. + Cho đường tròn (O;R) và điểm M thuộc đường tròn (O). Đường trung trực của đoạn thẳng OM cắt đường tròn (O) tại C và D và cắt OM tại H. a) Chứng minh H là trung điểm của CD. b) Với điểm K ở ngoài đường tròn (O;R). Vẽ hai tiếp tuyến tại KC, KD của (O) (C và D là các tiếp điểm). Chứng minh tam giác OMC đều. Tính OK theo R. c) Đường thẳng vuông góc với OC tại O cắt DK tại N. Chứng minh tam giác NKO là tam giác cân.
Đề học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bù Đăng - Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Bù Đăng, tỉnh Bình Phước. Trích dẫn Đề học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bù Đăng – Bình Phước : + Cho hàm số y = 2x − 1 có đồ thị là đường thẳng (d) và hàm số y = -x + 5 có đồ thị là đường thẳng (d’). a) Vẽ đồ thị hai hàm số đã cho trên cùng một hệ trục tọa độ Oxy. b) Tìm tọa độ giao điểm của hai đồ thị (d) và (d’) bằng phép tính. + Cho tam giác ABC vuông tại A có cạnh AB = 6cm, C = 60°. Hãy tính độ dài các cạnh AC, BC, đường cao AH và đường trung tuyến AM của tam giác ABC. + Cho nửa đường tròn (O;R) đường kính AB. Gọi Ax và By là hai tiếp tuyến với nửa đường tròn (Ax, By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A, B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự tại C, D. a) Chứng minh: CAM cân. b) Chứng minh: COD = 90. c) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD. d) Giả sử AM = R, gọi I là giao điểm của AM và OC. Tính độ dài IC theo R.