Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 10 năm 2019 cụm trường THPT chuyên DHĐB Bắc Bộ

Ngày 20 tháng 04 năm 2019, cụm các trường THPT chuyên khu vực Duyên hải và Đồng bằng Bắc Bộ liên kết tổ chức kỳ thi giao lưu học sinh giỏi Toán 10 lần thứ 12 năm học 2018 – 2019. Đề thi HSG Toán 10 năm 2019 cụm trường THPT chuyên DH&ĐB Bắc Bộ được biên soạn theo dạng đề tự luận với 5 bài toán, đề thi gồm 1 trang, học sinh làm bài trong khoảng thời gian 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi HSG Toán 10 năm 2019 cụm trường THPT chuyên DH&ĐB Bắc Bộ : + Cho bảng ô vuông kích thước 100 x 100 mà mỗi ô được điền một trong các ký tự A, B, C, D sao cho trên mỗi hàng, mỗi cột của bảng thì số lượng ký tự từng loại đúng bằng 25.Ta gọi hai ô thuộc cùng hàng (không nhất thiết kề nhau) nhưng được điền khác ký tự là “cặp tốt”, còn hình chữ nhật có các cạnh song song với cạnh hoặc nằm trên cạnh của bảng và bốn ô vuông đơn vị ở bốn góc của nó được điền đủ bốn ký tự A, B, C, D là “bảng tốt”. [ads] a) Hỏi trong các cách điền ở trên, có bao nhiêu cách điền mà mỗi bảng ô vuông 1 x 4, 4 x 1 và 2 x 2 đều có chứa đủ các ký tự A, B, C, D? b) Chứng minh rằng với mọi cách điền thỏa mãn đề bài thì trên bảng ô vuông đã cho: i) Luôn có 2 cột của bảng mà từ đó có thể chọn ra được 76 cặp tốt. ii) Luôn có một bảng tốt. + Cho tam giác ABC có AB = AC, các điểm D, E, F lần lượt nằm trên các cạnh BC, CA, AB sao cho DE // AB, DF // AC. Đường tròn ngoại tiếp tam giác ABC cắt đường tròn ngoại tiếp tam giác AEF tại các điểm A, G. Đường thẳng DE cắt đường tròn ngoại tiếp tam giác AEF tại điểm H (H khác E). Đường thẳng qua G vuông góc với GH cắt đường tròn ngoại tiếp tam giác ABC tại điểm K (K khác G), đường thẳng qua G vuông góc với GC cắt đường tròn ngoại tiếp tam giác AEF tại điểm L (L khác G). Gọi P, Q lần lượt là tâm đường tròn ngoại tiếp tam giác GDK, GDL. Chứng minh rằng khi điểm D thay đổi trên cạnh BC thì: a) Đường tròn ngoại tiếp tam giác GEF luôn đi qua hai điểm cố định. b) Đường tròn ngoại tiếp tam giác GPQ luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Quách Văn Phẩm - Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề tuyển chọn học sinh giỏi môn Toán 10 năm học 2023 – 2024 trường THPT Quách Văn Phẩm, tỉnh Cà Mau; đề gồm 08 bài toán hình thức tự luận, thời gian làm bài 180 phút.
Đề HSG Toán 10 lần 14 năm 2023 hội các trường THPT chuyên DHĐB Bắc Bộ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 lần thứ 14 (XIV) năm 2023 hội các trường THPT chuyên vùng Duyên hải và Đồng bằng Bắc Bộ; kỳ thi được diễn ra vào ngày 15 tháng 07 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 10 lần 14 năm 2023 hội các trường THPT chuyên DH&ĐB Bắc Bộ : + Cho tam giác nhọn ABC nội tiếp đường tròn O có AD là đường phân giác trong (D thuộc BC). Gọi E F lần lượt là điểm chính giữa cung CA chứa B, cung AB chứa C của đường tròn O. Đường tròn ngoại tiếp tam giác BDE cắt AB tại M. Đường tròn ngoại tiếp tam giác CDF cắt AC tại N. a) Chứng minh rằng bốn điểm BM NC cùng nằm trên một đường tròn. b) Gọi I là tâm đường tròn ngoại tiếp tam giác AMN. Gọi AP AQ lần lượt là đường kính của đường tròn ngoại tiếp tam giác ABN ACM. Chứng minh rằng các đường thẳng BQ CP AI đồng quy. + Cho số nguyên dương n. Chứng minh rằng nếu tồn tại các số nguyên dương abc sao cho 2027 n a bc b ac thì n là số chẵn. + Một số nguyên dương m được gọi là “tốt” nếu tồn tại các số nguyên dương abcd sao cho mabcdm 49 và ad bc. a) Chứng minh rằng số nguyên dương m là “tốt” khi và chỉ khi tồn tại hai số nguyên dương x y sao cho xy m và (xy m 1 1 49). b) Tìm số “tốt” lớn nhất.
Đề học sinh giỏi Toán 10 THPT năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi (HSG) môn Toán 10 chương trình THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi mã đề 111, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 10 THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Khi một quả bóng được đá lên từ độ cao 0 h, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo chuyển động của quả bóng là một parabol và độ cao h của quả bóng được tính bởi công thức 2 0 0 2 h t at v t h trong đó độ cao h và độ cao ban đầu 0 h được tính bằng mét, t là thời gian chuyển động tính bằng giây, a là gia tốc chuyển động tính bằng 2 0 m s v là vận tốc ban đầu tính bằng m s. Biết rằng sau 0,5 giây quả bóng đạt được độ cao 6,075 m; sau 1 giây quả bóng đạt độ cao 8,5 m; sau 2 giây quả bóng đạt độ cao 6 m. Độ cao lớn nhất của quả bóng được đá lên so với mặt đất là (kết quả được làm tròn đến hàng phần chục). + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Cho tam giác ABC có trọng tâm G. Gọi I là trung điểm của cạnh BC và M là điểm thỏa mãn: 2 3 MA MB MC MB MC. Khi đó, tập hợp các điểm M là A. đường trung trực của đoạn thẳng IG. B. đường trung trực của đoạn thẳng BC. C. đường tròn tâm I, bán kính BC. D. đường tròn tâm G, bán kính BC.
Đề học sinh giỏi Toán 10 năm 2022 - 2023 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi văn hóa môn Toán 10 THPT năm học 2022 – 2023 trường THPT Thị xã Quảng Trị; kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2022 – 2023 trường THPT Thị xã Quảng Trị : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12gam hương liệu, 9 lít nước và 315gam đường để pha chế hai loại nước A và B. Để pha chế 1 lít nước A cần 45gam đường, 1 lít nước và 0,5gam hương liệu; để pha chế 1 lít nước B cần 15gam đường, 1 lít nước và 2gam hương liệu. Mỗi lít nước A nhận 60 điểm thưởng, mỗi lít nước B nhận 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất? + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là điểm trên cạnh AB sao cho AB AD 3 và H là hình chiếu vuông góc của B trên CD. Điểm 1 3 2 2 M là trung điểm HC. Xác định tọa độ đỉnh C, biết đỉnh B nằm trên đường thẳng có phương trình x y 7 0. + Một sa mạc có dạng hình chữ nhật ABCD có DC km 25 CB km 20 và P Q lần lượt là trung điểm của AD BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn PQ rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABQP là 15 km h vận tốc của ngựa khi đi trên phần PQCD là 30 km h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất?