Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2019 trường chuyên Phan Bội Châu - Nghệ An lần 2

Chiều thứ Bảy ngày 09 tháng 03 năm 2019, thầy và trò trường THPT chuyên Phan Bội Châu – Nghệ An đã tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 lần thứ hai dành cho toàn bộ học sinh khối 12 của trường, kỳ thi nhằm kiểm tra đánh giá chất lượng học sinh trong quá trình ôn thi, đồng thời tạo điều kiện để các em được thử sức, đánh giá rõ học lực bản thân, từ đó có phương pháp ôn thi THPT Quốc gia 2019 môn Toán hợp lý. Đề thi thử Toán THPTQG 2019 trường chuyên Phan Bội Châu – Nghệ An lần 2 có mã đề 678, đề gồm 06 trang với 50 câu hỏi và bài tập dạng trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành bài thi Toán. Với chất lượng dạy và học đã được khẳng định, đề thi thử Toán THPTQG 2019 trường chuyên Phan Bội Châu – Nghệ An lần 2 được đánh giá là khó, chứa nhiều bài toán ở mức độ vận dụng cao, thích hợp đối với các học sinh ôn tập các dạng toán phân loại điểm 9 – 10 trong đề thi THPT Quốc gia môn Toán năm học 2018 – 2019. [ads] Trích dẫn đề thi thử Toán THPTQG 2019 trường chuyên Phan Bội Châu – Nghệ An lần 2 : + Tại trung tâm một thành phố người ta tạo điểm nhấn bằng cột trang trí hình nón có kích thước như sau: chiều dài đường sinh l = 10m, bán kính đáy R = 5m. Biết rằng tam giác SAB là thiết diện qua trục của hình nón và C là trung điểm SB. Trang trí một hệ thống đèn điện tử chạy từ A đến C trên mặt nón. Xác định giá trị ngắn nhất của chiều dài dây đèn điện tử. + Người ta xây một sân khấu với mặt sân có dạng hợp của hai hình tròn giao nhau. Bán kính của hai hình tròn là 20 mét và 15 mét. Khoảng cách giữa hai tâm của hai hình tròn là 30 mét. Chi phí làm mỗi mét vuông phần giao của hai hình tròn là 300 nghìn đồng và chi phí làm mỗi mét vuông phần còn lại là 100 nghìn đồng. Hỏi số tiền làm mặt sân của sân khấu gần với số nào nhất trong các số dưới đây? + Một anh sinh viên nhập học đại học vào tháng 8 năm 2014. Bắt đối từ tháng 9 năm 2014, cứ vào ngày mồng một hàng tháng anh vay ngân hàng 3 triệu đồng với lãi suất cố định 0.8% mỗi tháng. Lãi tháng trước được cộng vào số nợ để tiếp tục tính lãi cho tháng tiếp theo (lãi kép). Vào ngày mồng một hàng tháng kể từ tháng 9/2016 về sau anh không vay ngân hàng nữa và anh còn trả được cho ngân hàng 2 triệu đồng do có việc làm thêm. Hỏi ngay sau khi kết thúc ngày anh ra trường (30/06/2018) anh còn nợ ngân hàng bao nhiêu tiền (làm tròn đến hàng nghìn đồng)?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GDĐT Sóc Trăng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở Giáo dục và Đào tạo tỉnh Sóc Trăng (mã đề 211); kỳ thi được diễn ra vào ngày … tháng 05 năm 2024. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GD&ĐT Sóc Trăng : + Một cái cổng chào bằng hơi có chiều cao so với mặt đất 11 m (không tính phần phao chứa không khí), chân của cổng chào tiếp xúc với mặt đất theo một đường tròn có đường kính là 2 m và bề rộng của cổng chào là 22 m (không tính phần phao chứa không khí). Bỏ qua độ dày của lớp vỏ cổng chào. Tính thể tích không khí chứa bên trong cổng chào. + Cho khối nón có góc ở đỉnh bằng 60 độ dài đường cao bằng 4. Xét khối tứ diện đều OABC có một đỉnh trùng với tâm đường tròn đáy, ba đỉnh còn lại nằm trên các đường sinh và nằm trong mặt phẳng song song với đáy của khối nón. Tính thể tích khối tứ diện OABC (làm tròn đến hàng phần trăm). + Trong không gian Oxyz, cho hai điểm A(2; 1; 3) và B(6; 5; 5). Xét khối chóp tứ giác đều đỉnh A, nội tiếp mặt cầu đường kính AB. Khi khối chóp có thể tích lớn nhất thì mặt phẳng chứa mặt đáy của khối chóp có dạng 2x by cz d 0. Giá trị của bcd bằng?
Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 11 tháng 05 năm 2024; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GD&ĐT Cà Mau : + Trên một mảnh đất hình vuông có diện tích 2 121m người ta đào một cái ao nuôi cá hình trụ sao cho tâm của hình tròn đáy trùng với tâm của mảnh đất. Ở giữa mép ao và mép mảnh đất người ta để lại một khoảng đất trống để đi lại, biết khoảng cách nhỏ nhất giữa mép ao và mép mảnh đất là x(m). Giả sử chiều sâu của ao cũng là x(m) (tham khảo hình vẽ bên dưới). + Xét các số phức z w 4 thỏa mãn z = 1 và 4 w là số thuần ảo. Gọi (H H 1 2) lần lượt là tập hợp điểm biểu diễn của số phức z w và Ax y Bx y là giao điểm của (H H 1 2) với 2 1 y0. Khi đó 12 1 2 Tx y 4 8 bằng? + Trong không gian Oxyz cho ba mặt phẳng (P x y z) 2 2 5 0 (Q x y z) 2 2 1 0 (R x yz) 2 2 3 0. Một đường thẳng ∆ thay đổi cắt ba mặt phẳng (PQR) lần lượt tại A B C. Giá trị nhỏ nhất của biểu thức 2 216 M AB AC bằng?
Đề thi thử TN THPT 2024 môn Toán lần 2 cụm Long Điền Đất Đỏ - BR VT
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán lần 2 cụm Long Điền Đất Đỏ, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án trắc nghiệm mã đề 101 – 102. Trích dẫn Đề thi thử TN THPT 2024 môn Toán lần 2 cụm Long Điền Đất Đỏ – BR VT : + Một sân chơi cho trẻ em hình chữ nhật có chiều dài 100 và chiều rộng là 60m người ta làm một con đường nằm trong sân (như hình vẽ). Biết rằng viền ngoài và viền trong của con đường là hai đường elip. Elip của đường viền ngoài có trục lớn và trục bé lần lượt song song với các cạnh hình chữ nhật và chiều rộng của mặt đường là 2m. Kinh phí cho mỗi 2 m làm đường 600.000 đồng. Tổng số tiền làm con đường đó (Số tiền được làm tròn đến hàng nghìn) là? + Trong không gian Oxyz cho mặt phẳng (P xy z) 2 2 16 0 và mặt cầu Sx y z. Một khối hộp chữ nhật (H) có bốn đỉnh nằm trên mặt phẳng (P) và bốn đỉnh còn lại nằm trên mặt cầu (S). Khi (H) có thể tích lớn nhất, thì mặt phẳng chứa bốn đỉnh của (H) nằm trên mặt cầu (S) là (Q x by cz d): 2 0. Giá trị của biểu thức bcd bằng? + Từ một khối gỗ dạng khối lăng trụ đứng ABC A B C có AB BC CA 30cm 40cm 50cm và chiều cao AA cm 100 người ta tiện để thu được một khối trụ có cùng chiều cao với khối gỗ ban đầu và đường tròn đáy là đường tròn nội tiếp tam giác ABC. Thể tích của khối trụ gần nhất với giá trị nào dưới đây?