Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 12 môn Toán năm 2020 2021 trường THPT Hưng Nhân Thái Bình

Nội dung Đề khảo sát HSG lớp 12 môn Toán năm 2020 2021 trường THPT Hưng Nhân Thái Bình Bản PDF Ngày 28 tháng 11 năm 2020, trường THPT Hưng Nhân, tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng học sinh giỏi khối 12 môn Toán năm học 2020 – 2021. Đề khảo sát HSG Toán lớp 12 năm 2020 – 2021 trường THPT Hưng Nhân – Thái Bình mã đề 101 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát HSG Toán lớp 12 năm 2020 – 2021 trường THPT Hưng Nhân – Thái Bình : + Một kim tự tháp Ai Cập được xây dựng khoảng 2500 năm trước công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 150 m, cạnh đáy dài 220 m. Hỏi diện tích xung quanh của kim tự tháp đó bằng bao nhiêu? (diện tích xung quanh của hình chóp là tổng diện tích của các mặt bên). + Ông An gửi 320 triệu đồng vào ngân hàng ACB và VietinBank theo phương thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng ACB với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất 0,73% một tháng trong thời gian 9 tháng. Biết tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng. Hỏi số tiền ông An lần lượt ở hai ngân hàng ACB và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)? A. 120 triệu đồng và 200 triệu đồng. B. 200 triệu đồng và 120 triệu đồng. C. 140 triệu đồng và 180 triệu đồng. D. 180 triệu đồng và 140 triệu đồng. + Giả sử trong trận chung kết AFF Cup 2018, đội tuyển Việt Nam phải phân định thắng thua trên chấm đá phạt 11 m. Biết xác suất để mỗi cầu thủ Việt Nam thực hiện thành công quả đá 11 m của mình đều là 0,8. Gọi p là xác suất để đội tuyển Việt Nam thực hiện thành công từ 4 quả trở lên trong 5 lượt sút đầu tiên. Khẳng định nào sau đây đúng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Quảng Nam
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Nam mã đề 101 gồm 05 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề), kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Có bao nhiêu số tự nhiên có bảy chữ số đôi một khác nhau, gồm ba chữ số lẻ, bốn chữ số chẵn mà trong đó có đúng một chữ số lẻ xen kẽ giữa hai chữ số chẵn? + Cho tứ diện đều ABCD có cạnh bằng 22 và tâm mặt cầu ngoại tiếp của nó là O. Mặt phẳng (P) song song với hai cạnh AB, CD và cách tâm O một khoảng bằng 1/2. Diện tích thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) bằng? + Trong không gian Oxyz, cho hai điểm A(-1;-5;2), B(3;3;-2) và đường thẳng d; hai điểm C, D thay đổi trên d sao cho CD = 63. Biết rằng khi C(a;b;c) (b < 2) thì tổng diện tích của tất cả các mặt của tứ diện ABCD đạt giá trị nhỏ nhất. Tính tổng a + b + c.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi được biên soạn theo dạng đề 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 146. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Trong không gian Oxyz cho điểm A 1 2 0 và mặt phẳng P x y z 2 2 3 0. Mặt phẳng 2x by cz d 0 (với b c d) đi qua điểm A, song song với trục Oy và vuông góc với P. Khi đó giá trị b c d bằng? + Cho hàm số y f x là hàm số có đạo hàm cấp hai liên tục trên. Gọi C là đồ thị của hàm số đã cho. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 0 lần lượt tạo với trục hoành góc 0 0 30 45. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 2 lần lượt song song với đường thẳng 1 d y x 2 1 và vuông góc với đường thẳng 2 d y x 5. + Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bằng hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía bên ngoài để được hình như hình 2. Quay hình 2 xung quanh trục d ta được một khối tròn xoay có thể tích bằng?
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 Trung học Phổ thông (THPT) năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào sáng thứ Sáu ngày 11 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho hàm số y có đồ thị (C), đường thẳng d: y = -x + m (m là tham số) và hai điểm M(3;4), N(4;5). Tìm các giá trị thực của m để đường thẳng d cắt (C) tại hai điểm phân biệt A, B sao cho bốn điểm A, B, M, N lập thành tứ giác lồi AMBN có diện tích bằng 2. + Cho tam giác ABC với điểm D trên cạnh BC (D khác B, D khác C) và điểm M trên đoạn AD (M khác A, M khác D). Gọi I, K lần lượt là trung điểm của MB, MC. Tia DI cắt AB tại điểm P, tia DK cắt AC tại điểm Q. Chứng minh: PQ // IK. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Gọi E, F lần lượt là trung điểm của AB và BC, H là giao điểm của AF và DE. Biết SH vuông góc với mặt phẳng (ABCD) và góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 60°. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SH, DF theo a.
Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2021 - 2022
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia môn Toán Trung học Phổ thông năm học 2021 – 2022; kỳ thi được diễn ra vào các ngày 04 và 05 tháng 03 năm 2022. Trích dẫn đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2021 – 2022 : + Với mỗi cặp số nguyên dương (n;m) thoả mãn n < m, gọi s(n;m) là số các số nguyên dương thuộc đoạn [n;m] và nguyên tố cùng nhau với m. Tìm tất cả các số nguyên dương m >= 2 thoả mãn đồng thời hai điều kiện sau. + Cho P(x) và Q(x) là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của P(x) đều không vượt quá 2021 và Q(x) có ít nhất một hệ số lớn hơn 2021. Giả sử P(2022) = Q(2022) và P(x), Q(x) có chung nghiệm hữu tỷ p/q khác 0 (p và q nguyên tố cùng nhau). Chứng minh rằng với mọi n. + Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu x là số chấm trên mặt xuất hiện của con súc sắc thứ i. a) Tính số các bộ có thể có. b) Tính xác suất để có một số trong bằng tổng của ba số còn lại. c) Tính xác suất để có thể chia thành hai nhóm có tổng bằng nhau.