Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 8 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. a) Chứng minh: EA.EB = ED.EC. b) Kẻ đường thẳng đi qua M cắt các cạnh EB, EC theo thứ tự ở P và Q sao cho MP = MQ. Gọi I là trung điểm của BC. Chứng minh rằng: MI vuông góc với PQ. + Ba bạn An, Giáp, Mai hẹn gặp nhau tại nhà bạn Giáp, biết rằng nhà bạn An ở vị trí A, nhà bạn Giáp ở vị trí G và nhà bạn Mai ở vị trí M (được mô tả như hình vẽ). Biết rằng tứ giác ABCD là hình vuông và M là trung điểm của CD. Quãng đường bạn Mai đi từ nhà tới nhà bạn Giáp là 2 km. Hỏi bạn An phải đi quãng đường ngắn nhất từ nhà tới nhà bạn Giáp là bao nhiêu kilômét để gặp Giáp và Mai? + Để lập đội tuyển năng khiếu về bóng chuyền của một trường thầy thể dục đưa ra quy định tuyển chọn như sau: Mỗi bạn dự tuyển sẽ được phát bóng 10 lần, lần phát bóng đạt yêu cầu được cộng 3 điểm; lần phát bóng không đạt yêu cầu thì bị trừ 2 điểm. Nếu bạn nào có số điểm từ 20 điểm trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải phát bóng ít nhất bao nhiêu lần đạt yêu cầu?

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán lớp 8 có lời giải
Tài liệu gồm 354 trang, tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán lớp 8 có đáp án và lời giải chi tiết, giúp học sinh lớp 8 ôn tập để chuẩn bị cho kỳ thi chọn HSG Toán 8 cấp trường, cấp quận / huyện, cấp tỉnh / thành phố.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hương Khê - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hương Khê – Hà Tĩnh : + Ông Bảo đã thu lãi 400 triệu đồng (chưa trừ tiền thuế), khi mua đất đầu tư. Khi ông mua, mỗi m2 đất có giá 1 triệu đồng, nhưng khi bán, có giá gấp 5 lần. Hỏi miếng đất ông Bảo đầu tư, có diện tích bằng bao nhiêu m2? + Cô Hân có nuôi 80 con gồm gà trống, gà mái và vịt. Số gà mái gấp ba lần số gà trống. 60% số gia cầm này là vịt. Vậy có bao nhiêu con gà mái? + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC b) Chứng minh DEC AEF c) Gọi I là giao điểm của FD và BE. Chứng minh HI.BE = HE.BI.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hà Đông – Hà Nội : + Cho các số dương a, b, c thỏa mãn a + b + c = 2022. Tìm giá trị lớn nhất của biểu thức P. + Cho tam giác ABC vuông tại A (AC > AB). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thắng song song với AH, cắt đường thẳng AC tại P. 1) Chứng minh AKC đồng dạng BPC. 2) Gọi Q là trung điểm của BP. Chứng minh BP ВС. 3) Tia AQ cắt BC tại I. Chứng minh: HB АН ВС IB. + Có 5 điểm nằm trong một hình vuông cạnh a = 36,7 (đơn vị dài). Chứng minh rằng tồn tại một điểm nằm trong hình vuông mà khoảng cách từ điểm đó đến 5 điểm nói trên đều lớn hơn 10.
Đề kiểm định chất lượng Toán 8 năm 2021 - 2022 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Trích dẫn đề kiểm định chất lượng Toán 8 năm 2021 – 2022 phòng GD&ĐT Nghi Lộc – Nghệ An : + Chứng minh rằng với mọi n thuộc số tự nhiên thì biểu thức M chia hết cho 21. + Tìm số tự nhiên gồm 4 chữ số thỏa mãn đồng thời hai tính chất: a) Khi chia số đó cho 100 ta được số dư là 6 b) Khi chia số đó cho 51 ta được số dư là 17. + Chứng minh rằng với mọi a thuộc Z thì N là một số chính phương.