Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra HK1 Toán 11 năm học 2017 - 2018 liên trường THPT thành phố Vinh - Nghệ An

Đề kiểm tra HK1 Toán 11 năm học 2017 – 2018 liên trường THPT thành phố Vinh – Nghệ An gồm 2 phần với 25 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài mỗi phần là 45 phút, đây là đề thi học kỳ 1 Toán 11 dành chung cho các trường THPT tại thành phố Vinh, tỉnh Nghệ An, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề kiểm tra HK1 Toán 11 : + Gieo ngẫu nhiên một con súc sắc cân đối, đồng chất 1 lần. Gọi A là biến cố số chấm xuất hiện trên con súc sắc bé hơn 3. Biến cố đối của biến cố A là: A. Số chấm xuất hiện trên con súc sắc lớn hơn 3 B. Số chấm xuất hiện trên con súc sắc không phải là 3 C. Số chấm xuất hiện trên con súc sắc không bé hơn 3 D. Số chấm xuất hiện trên con súc sắc lớn hơn hoặc bằng 4 [ads] + Có 6 học sinh trường THPT Huỳnh Thúc Kháng, 5 học sinh trường THPT Hà Huy Tập và 4 học sinh trường THPT Lê Viết Thuật tham gia Câu lạc bộ Sáng tạo trẻ. Từ các học sinh nói trên, Ban tổ chức Câu lạc bộ Sáng tạo trẻ chọn ngẫu nhiên bốn học sinh để tham gia dự án nghiên cứu. a) Tính số phần tử của không gian mẫu? b) Tính xác suất sao cho trong bốn học sinh được chọn có cả học sinh của ba trường THPT nói trên. + Đề thi THPT môn Toán gồm 50 câu trắc nghiệm khách quan, mỗi câu có 4 phương án trả lời và chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm, điểm tối đa là 10 điểm. Một học sinh có năng lực trung bình đã làm đúng được 25 câu (từ câu 1 đến câu 25), các câu còn lại học sinh đó không biết cách giải nên chọn phương án ngẫu nhiên cả 25 câu còn lại. Tính xác suất để điểm thi môn Toán của học sinh đó lớn hơn hoặc bằng 6 điểm nhưng không vượt quá 8 điểm (chọn phương án gần đúng nhất)?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Nhân Chính - Hà Nội
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Nhân Chính – Hà Nội gồm 30 câu hỏi trắc nghiệm, thời gian làm bài 60 phút. Bạn đọc có thể theo dõi các đề thi HK1 Toán 11 được cập nhật thường xuyên tại đây.
Đề thi HKI Toán 11 không chuyên năm học 2017 - 2018 trường Phổ Thông Năng Khiếu - TP. HCM
Đề thi HKI Toán 11 không chuyên năm học 2017 – 2018 trường Phổ Thông Năng Khiếu – TP. HCM gồm 6 bài toán tự luận, thời gian làm bài 90 phút.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Hoài Đức A - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Hoài Đức A – Hà Nội gồm 20 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I, J lần lượt là trọng tâm tam giác SCD và tam giác SAB. Chọn kết quả sai: A. Thiết diện tạo bởi mặt phẳng (ABI) và hình chóp S.ABCD là hình bình hành B. Đường thẳng IJ song song với mặt phẳng (SCB) C. Giao điểm của đường thẳng IJ và mặt phẳng (SAC) là giao điểm của đường thẳng IJ và đường thẳng SO D. Đường thẳng IJ song song với mặt phẳng (ABCD) [ads] + Một hộp chứa 12 viên bi, trong đó có năm viên bi màu đỏ được đánh số từ 1 đến 5, bốn viên bi màu vàng được đánh số từ 1 đến 4, ba viên bi màu xanh được đánh số từ 1 đến 3. Lấy ngẫu nhiên đồng thời 2 viên bi từ hộp. Tính xác suất để 2 bi lấy được vừa khác màu vừa khác số. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB và SD. a) Tìm giao tuyến của mặt phẳng (SAC) và mặt phẳng (SDM). Tìm giao điểm H của đường thẳng SA và mặt phẳng (MNC) b) Chứng minh các đường thẳng CM, AD, HN đồng quy c) Chứng minh đường thẳng MN song song với (SBC) Bạn đọc có thể thường xuyên theo dõi các đề thi HK1 Toán 11 cập nhật thường xuyên tại đây.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Ân Thi - Hưng Yên
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Ân Thi – Hưng Yên gồm 20 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SA, P là điểm trên cạnh SD sao cho 3.SP = PD. a) Tìm giao điểm I của MP với mặt phẳng (ABCD). b) Tìm giao tuyến của hai mặt phẳng (MPC) và (SAB). c) Gọi Q là giao điểm của AB và (MPC), tính tỉ số QA/QB. [ads] + Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất? A. Hai đường thẳng cắt nhau. B. Ba điểm phân biệt. C. Một điểm và một đường thẳng. D. Bốn điểm không đồng phẳng. + Từ một hộp có 6 viên bi màu xanh khác nhau và 7 viên bi màu đỏ khác nhau, lấy ngẫu nhiên 5 viên bi. Tính xác suất sao cho: a) Lấy được 2 viên bi màu xanh và 3 viên bi màu đỏ. b) Lấy được nhiều nhất 2 viên bi màu xanh.