Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc

Tài liệu gồm 173 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3 (Toán 11). BÀI 1 . VECTƠ TRONG KHÔNG GIAN. Dạng 1. Biểu diễn vectơ. Dạng 2. Đẳng thức vectơ. Dạng 3. Đồng phẳng của ba vectơ. Dạng 4. Tìm điểm thỏa mãn đẳng thức vectơ. BÀI 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. Dạng 1. Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc trong không gian. BÀI 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh đường thẳng vuông góc với mặt phẳng. Từ đó suy ra đường thẳng vuông góc với đường thẳng. Dạng 3. Xác định góc – hình chiếu – tính độ dài. Dạng 4. Thiết diện. BÀI 4 . HAI MẶT PHẲNG VUÔNG GÓC. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Tính góc giữa hai mặt phẳng. Dạng 4. Thiết diện. BÀI 5 . KHOẢNG CÁCH. Dạng 1. Khoảng cách từ một điểm đến đường thẳng. Dạng 2. Khoảng cách từ một điểm đến mặt phẳng. Dạng 3. Khoảng cách giữa hai mặt phẳng song song, khoảng cách từ đường thẳng đến mặt phẳng. Dạng 4. Khoảng cách giữa hai đường thẳng chéo nhau.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm vectơ trong không gian
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vectơ trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Chứng minh các đằng thức vectơ, chứng minh 3 vectơ đồng phẳng. Dạng 2: Tính độ dài đoạn thẳng, góc giữa hai vectơ, chứng minh 2 đường thẳng vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Trắc nghiệm quan hệ vuông góc trong các đề thi thử Toán 2018
Tài liệu gồm 379 trang tổng hợp câu hỏi và bài tập trắc nghiệm vectơ trong không gian, quan hệ vuông góc có lời giải chi tiết trong các đề thi thử Toán 2018 của các trường THPT và sở GD – ĐT trên cả nước. Trích dẫn tài liệu trắc nghiệm quan hệ vuông góc trong các đề thi thử Toán 2018 : + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH 2017 – 2018) Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 45 độ. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng? (Số đo góc được làm tròn đến hàng đơn vị). [ads] + (THPT Sơn Tây – Hà Nội – lần 1 – NH 2017 – 2018) Cho lăng trụ ABC.A’B’C’ có các mặt bên là hình vuông cạnh a. Gọi D, E lần lượt là trung điểm các cạnh BC, A’C’. Tính khoảng cách giữa hai đường thẳng AB’ và DE theo a. + (THPT Tam Phước – Đồng Nai – lần 1 – NH 2017 – 2018) Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AD = a, AB = 2a, BC = 3a, SA = 2a, H là trung điểm cạnh AB, SH là đường cao của hình chóp S.ABCD. Tính khoảng cách từ điểm A đến mặt phẳng (SCD).
429 câu trắc nghiệm chuyên đề quan hệ vuông góc trong không gian - Phạm Văn Huy
Tài liệu gồm 45 trang, gồm các bài toán trắc nghiệm thuộc chuyên đề quan hệ vuông góc trong không gian phân loại theo chủ đề, đáp án nằm cuối tài liệu. Trích dẫn tài liệu : + Cho hình tứ diện OABC với OA, OB, OC đôi một vuông góc và OA = OB = OC. Gọi I là trung điểm của BC, J là trung điểm AI, Gọi K, L lần lượt là hình chiếu vuông góc của O lên AI và của J lên OC. Chọn khẳng định đúng trong các khẳng định sau? A. Đoạn vuông góc chung của AI và OC là JLQ B. Đoạn vuông góc chung của AI và OC là IC C. Đoạn vuông góc chung của AI và OC là OK D. Các khẳng định trên đều sai [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường thẳng vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường thẳng này và vuông góc với đường thẳng kia B. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kỳ thuộc a tới mp(P) C. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kỳ trên b D. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kỳ trên mặt phẳng này đến mặt phẳng kia + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia B. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó C. Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia D. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó cắt cả hai đường thẳng đó