Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 11 năm 2017 - 2018 trường THPT Yên Lạc 2 - Vĩnh Phúc

Đề thi học kỳ 2 Toán 11 năm 2017 – 2018 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 2 trang với 8 câu hỏi trắc nghiệm khách quan và 5 bài toán tự luận, tỉ lệ điểm số giữa trắc nghiệm và tự luận là 20 : 80, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán 11 năm 2017 – 2018 : + Cho hình chóp S.ABCD, đáy ABCD là hình thoi, SA ⊥ (ABCD). Khẳng định nào sau đây sai? + Chóp tứ giác đều S.ABCD có độ dài cạnh bên và cạnh đáy đều bằng a. Khoảng cách từ S đến mặt phẳng (ABCD) bằng? [ads] + Cho hình vuông C1 có độ dài cạnh bằng 4. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để được hình vuông C2 ( tham khảo hình vẽ). Từ hình vuông C2 tiếp tục làm như vậy để được hình vuông C3 … . Tiếp tục quá trình trên ta được dãy các hình vuông C1, C2, …, Cn, … . Gọi S1, S2, …, Sn, … tương ứng là diện tích các hình vuông C1, C2, …, Cn, … .Tính tổng S1 + S2 + … + Sn + … .

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh 2a và có tâm O. Cạnh bên SA a 2 và vuông góc mặt đáy (ABCD). a) Chứng minh: CD SAD. b) Chứng minh hai mặt phẳng (SAC) và (SBD) vuông góc với nhau. c) Tính số đo của góc hợp bởi đường thẳng SO và mặt đáy (ABCD). d) Tính khoảng cách giữa hai đường thẳng SO và BM với M là trung điểm SC. + Cho hàm số 3 2 2 y f x x mx m x m 2 3 có đồ thị là Cm. Gọi 1 k là hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ bằng –1, gọi 2 k là hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ bằng 0. Tìm m để tổng 1 2 k k đạt giá trị nhỏ nhất. + Viết phương trình tiếp tuyến của đồ thị (C) hàm số 4 2 y x x 3 2 tại điểm thuộc đồ thị có hoành độ 0 x 2.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Võ Văn Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Võ Văn Kiệt, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Võ Văn Kiệt – TP HCM : + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, 𝑆𝐴 ⊥ (𝐴𝐵𝐶𝐷) và 𝑆𝐴 = 𝑎√3. a/ Chứng minh: 𝑆𝐴 ⊥ 𝐶𝐷, 𝐵𝐶 ⊥ (𝑆𝐴𝐵). b/ Chứng minh (𝑆𝐴𝐷) ⊥ (𝑆𝐷𝐶). c/ Tính góc giữa SB và (ABCD). + Cho hình lập phương ABCD.A’B’C’D’. Chứng minh B C A B C D. + Chứng minh rằng phương trình: 2 7 5 m m x x 5 1 0 luôn có nghiệm với mọi m R.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường Diên Hồng - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THCS – THPT Diên Hồng, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THCS – THPT Diên Hồng – TP HCM : + Cho hình chóp S.ABCD có đáy là hình vuông tâm O với độ dài cạnh là 2a. Cạnh bên SA vuông góc đáy có độ dài SA a 3. a/ Chứng minh rằng: BC SAB và SBD SAC. b/ Xác định và tính góc giữa SO và mặt đáy (ABCD). c/ Xác định và tính khoảng cách từ điểm B đến (SCD). + Viết phương trình tiếp tuyến của đồ thị hàm số 3 2 C y x x 3 2 biết tiếp tuyến vuông góc với đường thẳng 1 : 2020. + Chứng minh rằng phương trình 2020 2019 m x x x 2019 2020 2 4039 0 luôn có nghiệm với mọi tham số m.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.