Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi vào lớp 10 môn Toán sở GDĐT thành phố Hà Nội (1988 - 2023)

Tài liệu gồm 89 trang, được tổng hợp bởi thầy giáo Bùi Quốc Hoàn, tuyển tập đề thi chính thức tuyển sinh vào lớp 10 (hệ phổ thông và hệ chuyên) môn Toán sở Giáo dục và Đào tạo thành phố Hà Nội (giai đoạn từ năm 1988 đến năm 2023). Mở đầu : Kính chào các thầy giáo, cô giáo và các bạn học sinh. Trên tay các thầy giáo, cô giáo và các bạn học sinh đang là tuyển tập các đề thi vào 10 hệ phổ thông và hệ chuyên của thành phố Hà Nội từ năm học 1988 – 1989 đến năm học 2022 – 2023 được soạn thảo theo chuẩn LATEX. Tài liệu được soạn thảo với sự hỗ trợ của nhóm Toán và LATEX. Đặc biệt với cấu trúc gói đề thi ex_test của tác giả Trần Anh Tuấn, Đại học Thương Mại. Quá trình biên tập dựa trên đề thi các thầy giáo, cô giáo chia sẻ trên mạng không tránh được sơ xuất do tài liệu gốc không rõ. Rất mong thầy giáo, cô giáo thông cảm. Để tài liệu hoàn thiện và đầy đủ hơn thầy giáo, cô giáo có đề trong tài liệu còn thiếu hoặc sai sót mong thầy giáo, cô giáo gửi về Emai: [email protected]. Trân trọng cảm ơn. Hà Nội, ngày 19 tháng 06 năm 2022 Tác giả. Bùi Quốc Hoàn. Mục lục : 1 ĐỀ THI VÀO HỆ PHỔ THÔNG 4. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1988 – 1989 5. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1989 – 1990 6. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1990 – 1991 7. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1991 – 1992 8. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1992 – 1993 9. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1993 – 1994 10. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 1994 – 1995 11. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 12. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 13. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 14. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 15. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 16. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 17. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 18. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 19. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 20. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 21. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 22. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 23. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 24. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 25. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 26. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 27. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 28. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 29. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 30. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 31. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 32. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 33. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 34. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 35. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 36. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 37. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 38. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 39. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 40. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 41. 2 ĐỀ THI VÀO HỆ CHUYÊN 42. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 43. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 44. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 45. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 46. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 47. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 48. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 49. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 50. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 51. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 52. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 53. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 54. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 55. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 56. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 57. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 58. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 59. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 60. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 61. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 62. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 63. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 64. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 65. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 66. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 67. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 68. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 69. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 70. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 71. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 72. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 73. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 74. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 75. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 76. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 77. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 78. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 79. 38 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 80. 39 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 81. 40 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 82. 41 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 83. 42 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 84. 43 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 85. 44 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 86.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang là một bài thi khá thú vị và đầy thách thức. Được chia thành 5 bài toán tự luận, với lời giải chi tiết của thầy Nguyễn Chí Dũng, đề thi đòi hỏi sự tư duy logic và kiến thức chắc chắn của thí sinh. Trích một số bài toán trong đề: + Bài toán đầu tiên yêu cầu chứng minh tứ giác AHEC nội tiếp, chứng minh hai góc ABD và DBC bằng nhau, chứng minh tam giác ABE cân và chứng minh AKEF là hình thoi. + Bài toán thứ hai liên quan đến ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận, hỏi về khoảng cách mà một người quan sát có thể nhìn thấy trên mặt biển và cách xa nhìn thấy ngọn đèn từ tàu. Đề thi này không chỉ đánh giá kiến thức của thí sinh mà còn khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyết vấn đề của họ. Các bài toán đều rất thú vị và đòi hỏi sự chú ý, cẩn thận trong việc giải quyết từng bước. Với đề thi này, thí sinh cần phải tự tin, kiên nhẫn và sẵn sàng đối mặt với thách thức để có thể hoàn thành tốt. Chính vì vậy, đề thi tuyển sinh môn Toán sở GD và ĐT An Giang năm học 2017-2018 là một bài kiểm tra thực sự ý nghĩa và hữu ích đối với thí sinh.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc bao gồm 5 bài toán tự luận, với lời giải chi tiết cụ thể giúp học sinh tự tin trong việc giải quyết các bài toán phức tạp. Đề thi được ra dành cho các học sinh có khả năng toán học ưu việt, để giúp định hình và phát triển năng khiếu toán học của học sinh từ sớm.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lai Châu bao gồm 5 bài toán tự luận với lời giải chi tiết. Đây là cơ hội cho học sinh thể hiện năng lực, kiến thức và kỹ năng giải toán một cách sâu sắc. Đề thi này giúp học sinh rèn luyện tư duy logic, khả năng phân tích và giải quyết vấn đề một cách chính xác và nhạy bén.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi bao gồm 5 bài toán tự luận, với lời giải chi tiết để học sinh có thể tự kiểm tra và ôn tập kiến thức một cách hiệu quả. Dưới đây là một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy. Giả sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M, N, P, Q cùng thuộc một đường tròn. + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE. a. Chứng minh tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt, các số đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.