Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi vào lớp 10 môn Toán sở GDĐT thành phố Hà Nội (1988 - 2023)

Tài liệu gồm 89 trang, được tổng hợp bởi thầy giáo Bùi Quốc Hoàn, tuyển tập đề thi chính thức tuyển sinh vào lớp 10 (hệ phổ thông và hệ chuyên) môn Toán sở Giáo dục và Đào tạo thành phố Hà Nội (giai đoạn từ năm 1988 đến năm 2023). Mở đầu : Kính chào các thầy giáo, cô giáo và các bạn học sinh. Trên tay các thầy giáo, cô giáo và các bạn học sinh đang là tuyển tập các đề thi vào 10 hệ phổ thông và hệ chuyên của thành phố Hà Nội từ năm học 1988 – 1989 đến năm học 2022 – 2023 được soạn thảo theo chuẩn LATEX. Tài liệu được soạn thảo với sự hỗ trợ của nhóm Toán và LATEX. Đặc biệt với cấu trúc gói đề thi ex_test của tác giả Trần Anh Tuấn, Đại học Thương Mại. Quá trình biên tập dựa trên đề thi các thầy giáo, cô giáo chia sẻ trên mạng không tránh được sơ xuất do tài liệu gốc không rõ. Rất mong thầy giáo, cô giáo thông cảm. Để tài liệu hoàn thiện và đầy đủ hơn thầy giáo, cô giáo có đề trong tài liệu còn thiếu hoặc sai sót mong thầy giáo, cô giáo gửi về Emai: [email protected]. Trân trọng cảm ơn. Hà Nội, ngày 19 tháng 06 năm 2022 Tác giả. Bùi Quốc Hoàn. Mục lục : 1 ĐỀ THI VÀO HỆ PHỔ THÔNG 4. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1988 – 1989 5. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1989 – 1990 6. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1990 – 1991 7. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1991 – 1992 8. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1992 – 1993 9. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1993 – 1994 10. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 1994 – 1995 11. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 12. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 13. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 14. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 15. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 16. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 17. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 18. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 19. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 20. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 21. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 22. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 23. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 24. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 25. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 26. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 27. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 28. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 29. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 30. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 31. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 32. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 33. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 34. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 35. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 36. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 37. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 38. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 39. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 40. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 41. 2 ĐỀ THI VÀO HỆ CHUYÊN 42. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 43. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 44. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 45. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 46. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 47. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 48. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 49. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 50. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 51. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 52. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 53. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 54. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 55. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 56. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 57. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 58. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 59. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 60. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 61. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 62. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 63. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 64. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 65. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 66. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 67. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 68. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 69. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 70. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 71. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 72. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 73. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 74. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 75. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 76. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 77. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 78. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 79. 38 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 80. 39 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 81. 40 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 82. 41 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 83. 42 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 84. 43 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 85. 44 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 86.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bến Tre (chung)
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bến Tre (chung) được sử dụng cho toàn bộ các thí sinh dự thi vào các lớp 10 Trung học Phổ thông Công lập, đề thi gồm 08 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bến Tre (chung) : + Với giá trị nào của tham số m thì đồ thị của hai hàm số y = x + (5 + m) và y = 2x + (7 – m) cắt nhau tại một điểm nằm trên trục hoành? [ads] + Cho tam giác ABC vuông tại B có đường cao BH (H thuộc AC), biết AB = 6 cm, AC = 10 cm. Tính độ dài các đoạn thẳng BC, BH. + Trên đường tròn (O) lấy hai điểm A, B sao cho AOB = 65° và điểm C như hình vẽ. Tính số đo AmB, ACB và số đo ACB.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường ĐHSP – TP HCM (chung) được dành chung cho tất cả các thí sinh thi vào các lớp chuyên Toán, Văn và Tiếng Anh; kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường ĐHSP – TP HCM (chung) : + Lớp 10 chuyên Anh của trường Trung học Thực hành có bốn Tổ học sinh, số học sinh trong mỗi tổ bằng nhau. Trong một bài kiểm tra Anh văn, một số bạn được điểm 8, các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Hỏi lớp có bao nhiêu học sinh và có bao nhiêu bạn được 9 điểm bài kiểm tra Anh văn. [ads] + Cho một tấm tôn hình vuông. Người ta cắt ở bốn góc của tấm tôn đó bốn hình vuông nhỏ bằng nhau, mỗi hình vuông nhỏ có cạnh bằng 2 cm rồi gập tấm tôn lại như hình vẽ dưới đây để được một cái hộp không nắp. Tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. + Cho tam giác ABC vuông cân tại A. Vẽ trung tuyến BM. Đường tròn tâm O, đường kính CM cắt cạnh BC tại N. Vẽ đường kính NK của đường tròn (O), AK cắt đường tròn (O) tại E (E khác K). Chứng minh rằng ba điểm B, M, E thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Phúc (chuyên)
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc (chuyên) dành cho thí sinh thi vào các lớp chuyên Toán và chuyên Tin; đề gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc (chuyên) : + Tìm tất cả các số nguyên dương a, b, c, d thỏa mãn a! + b! + c! = d!. Cho biết kí hiệu n! là tích các số tự nhiên từ 1 đến n. [ads] + Cho tam giác nhọn ABC có AB < AC và nội tiếp đường tròn (O). Gọi I là tâm đường tròn nội tiếp tam giác ABC, tia AI cắt đường tròn (O) tại điểm D (khác A). Đường thẳng OD cắt đường tròn (O) tại điểm E (khác D) và cắt cạnh BC tại điểm F. a) Chứng minh rằng tam giác ABD cân. Xác định tâm đường tròn ngoại tiếp tam giác ABC. b) Chứng minh ID.IE = IF.DE. c) Gọi các điểm M, N lần lượt là hình chiếu vuông góc của I trên các cạnh AB, AC. Gọi H, K lần lượt là các điểm đối xứng với M, N qua I. Biết rằng AB + AC = 3.BC, chứng minh KBI = HCl. + Thầy Du viết số 2020^2021 thành tổng của các số nguyên dương rồi đem cộng tất cả các chữ số của các số nguyên dương này với nhau. Hỏi thầy Du có thể nhận được kết quả là số 2021 hoặc 2022 được không? Tại sao?
Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên)
Đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường THPT chuyên Hà Tĩnh (chuyên) dành cho thí sinh thi vào các lớp chuyên Toán, kỳ thi diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường THPT chuyên Hà Tĩnh (chuyên) : + Tồn tại hay không số nguyên dương n sao cho 2n + 2021 và 3n + 2020 đều là các số chính phương. + Tìm tất cả các cặp số nguyên dương (x;y) sao cho (x^2 – 2)/(xy + 2) có giá trị là số nguyên. [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại A và B sao cho hai tâm O và O’ nằm khác phía đối với đường thẳng AB. Đường thẳng d thay đổi đi qua B cắt các đường tròn (O) và (O’) lần lượt tại C và D (d không trùng với đường thẳng AB). a) Xác định vị trí của đường thẳng d sao cho đoạn thẳng CD có độ dài lớn nhất. b) Gọi M là điểm di chuyển từ điểm A, ngược chiều kim đồng hồ trên đường tròn (O); N là điểm di chuyển từ điểm A, cùng chiều kim đồng hồ trên đường tròn (O’) sao cho AOM luôn bằng AO’N. Chứng minh đường trung trực của MN luôn đi qua một điểm cố định.