Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Quỳ Hợp - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Quỳ Hợp, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Vòng chung kết cuộc thi “Học sinh, sinh viên với ý tưởng khởi nghiệp” lần thứ V được tổ chức tại TP Huế từ ngày 25 đến ngày 26 tháng 3 năm 2023, một lần nữa học sinh lớp 9 trường THCS thị trấn Quỳ Hợp có dự án dự thi đạt giải cao (giải Ba toàn quốc và giải Nhất bình chọn của khối học sinh). Tại vòng chung kết khối sinh viên có nhiều hơn khối học sinh 20 dự án. Nếu số dự án của khối học sinh lọt vào vòng chung kết tăng thêm 5 dự án thì số dự án của khối học sinh sẽ bằng 0,7 số dự án của khối sinh viên. Hỏi số dự án của khối học sinh lọt vào vòng chung kết là bao nhiêu? + Nhà An có một cái bể chứa nước hình trụ có đường kính đáy (không tính thành bể) là 1,8m, chiều cao (không tính đáy bể) là 2,5m. Sau khi tháo cạn và dọn sạch bể An dùng máy bơm với lưu lượng nước 3m3/h để bơm nước từ giếng lên bể. An dự tính máy bơm trong thời gian 1,5 giờ sẽ đầy bể. Em hãy tính xem dự tính của An đúng hay sai? (với 𝜋 ≈ 3,14). + Cho tam giác nhọn ABC (AB < AC) đường cao AH, đường phân giác của góc BAC cắt BC tại O. Kẻ OM, ON lần lượt vuông góc với AB, AC tại M và N. a. Chứng minh các tứ giác AMON, AMHO nội tiếp. b. Kẻ OK vuông góc với BC (K thuộc MN). Chứng minh rằng KN.AC = KM.AB. c. Gọi I là trung điểm của BC. Chứng minh 3 điểm A, K, I thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Vĩnh Long
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2022-2023 sở GDĐT Vĩnh Long Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2022-2023 sở GDĐT Vĩnh Long Sytu xin chào đến quý thầy, cô giáo và các em học sinh lớp 9 với đề thi chính thức dành cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Vĩnh Long. Kỳ thi sẽ diễn ra vào ngày 04 tháng 06 năm 2022, với đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Vĩnh Long: + Cho phương trình $2xm^3 - 2 = 0$ (trong đó $x$ là ẩn số và $m$ là tham số). Tìm $m$ sao cho phương trình có hai nghiệm phân biệt $x_1$ và $x_2$ sao cho biểu thức $2x_1^2 + x_2^2$ đạt giá trị lớn nhất. + Cho đường tròn $O$ có đường kính $AB$. Gọi $H$ là điểm thuộc đoạn thẳng $AO$ ($H$ nằm giữa $A$ và $O$). Vẽ đường thẳng vuông góc với $AB$ qua $H$, cắt đường tròn $O$ tại $C$ và $D$. Hai đường thẳng $BC$ và $AD$ cắt nhau tại $M$. Gọi $N$ là hình chiếu của $M$ trên $AB$. a) Chứng minh $\triangle ACN \sim \triangle AMN$. b) Chứng minh $2CH = NH = OH$. c) Tiếp tuyến tại $A$ của đường tròn $(O)$ cắt $NC$ tại $E$. Chứng minh đường thẳng $EB$ đi qua trung điểm của đoạn thẳng $CH$. + Trong hình vuông $ABCD$ có đường tròn ngoại tiếp $O$, trên dây cung $DC$ lấy điểm $E$ sao cho $DC = 3DE$. Đường thẳng $AE$ cắt cung nhỏ $DC$ tại $M$. Gọi $I$ là giao điểm của $BM$ và $DC$, vẽ $OH$ vuông góc với $DM$ tại $H$. Tính độ dài các đoạn thẳng $AE$ và $DI$ theo $R$. Quý thầy, cô và các em học sinh có thể tải về file WORD đầy đủ để xem toàn bộ đề thi và lời giải chi tiết. Chúc các bạn ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Chúng tôi xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022-2023 của sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em tự học và ôn tập hiệu quả. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên: 1. Cho tập con A của tập số tự nhiên, biết A có phần tử nhỏ nhất là 1 và lớn nhất là 100. Mỗi phần tử x thuộc A, x*1 luôn biểu diễn được dưới dạng x = a + b trong đó a, b thuộc A và a có thể bằng b. Hãy tìm tập A có số phần tử nhỏ nhất và giải thích cách tìm? 2. Trong tam giác ABC với AB AC và đường tròn nội tiếp O có trực tâm H. Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi I là trung điểm của BC, P là giao điểm của EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại K. a) Chứng minh PB = PC = PE = PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại Q. Chứng minh tứ giác BIQF nội tiếp. 3. Được cho ba điểm A, B, C phân biệt trên cùng một đường thẳng. Kẻ đường thẳng d vuông góc với AC qua B, D di chuyển trên đường thẳng d sao cho D khác B. Đường tròn ngoại tiếp tam giác ACD cắt d tại E. Gọi P, Q là hình chiếu vuông góc của B lần lượt trên AD và AE. Gọi R là giao điểm của BQ và CD, S là giao điểm của BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di chuyển trên đường thẳng d.
Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị
Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 bộ đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Quảng Trị. Bộ đề thi bao gồm đề thi, đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm; kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2022. Trích dẫn bộ đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Trị: Tìm tất cả các số nguyên tố p và q thỏa mãn 2^(p-1) + 2^(q-1) = 2^q. Ba cầu thủ của một đội bóng trò chuyện với nhau về số áo được in trên áo mỗi người, nội dung như sau: An: Tôi nhận ra rằng các số trên áo của chúng ta đều là số nguyên tố có hai chữ số. Bình: Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi đã trôi qua vào tháng này. Chung: Thật thú vị! Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi sắp tới vào tháng này. An: Và tổng hai số trên áo hai bạn là ngày hôm nay. Hãy xác định số áo của An, Bình và Chung. Cho biểu thức 2f(x) = ax^2 + bx + c (với abc ≠ 0). Đặt ∆ = b^2 - 4ac. Chứng minh rằng nếu ∆ ≤ 0 thì f(x) ≥ 0 với mọi số thực x. File WORD (dành cho quý thầy, cô): [file đính kèm]
Đề tuyển sinh chuyên môn Toán (chuyên Tin) 2022 2023 sở GD ĐT Quảng Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên Tin) 2022 2023 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 – 2023 sở GD&ĐT Quảng Nam Đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 – 2023 sở GD&ĐT Quảng Nam Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Tin) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Quảng Nam. Kỳ thi sẽ diễn ra vào ngày 14 – 16 tháng 06 năm 2022, với đề thi bao gồm đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 – 2023 sở GD&ĐT Quảng Nam: Cho đường tròn O và điểm I nằm ngoài đường tròn đó. Từ điểm I kẻ hai tiếp tuyến IA IB với đường tròn O (A B là các tiếp điểm). a) Chứng minh tứ giác OAIB nội tiếp đường tròn. b) Qua A kẻ đường thẳng song song với IB cắt đường tròn O tại điểm thứ hai là C (C khác A). Đường thẳng IC cắt đường tròn O tại điểm thứ hai là E (E khác C). Đường thẳng AE cắt IB tại K. Chứng minh 2 KB AK KE. c) Đường thẳng IC cắt AB tại D. Chứng minh IE DE IC DC. Cho parabol 2 P y x và đường thẳng d y x m 2 (m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt sao cho một trong hai giao điểm đó có hoành độ bằng 1. Cho phương trình 2 x x m 6 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt 1 2 x x thoả mãn 2 2 1 1 2 2 2 2 38 x x x x. Đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) năm 2022 – 2023 sở GD&ĐT Quảng Nam mang đến những bài toán đa dạng, đòi hỏi kiến thức và sự sáng tạo của thí sinh. Hy vọng các em sẽ nỗ lực hết mình để đạt kết quả cao trong kỳ thi sắp tới!