Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian - Lư Sĩ Pháp

Tài liệu gồm 156 trang phân dạng và hướng dẫn giải các dạng toán thuộc các chủ đề: hệ trục tọa độ Oxyz, phương trình mặt phẳng, phương trình đường thẳng trong không gian … thuộc chương trình Hình học 12 chương 3 – phương pháp tọa độ trong không gian, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. §1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN Vấn đề 1 . Tìm tọa độ của một vectơ và các yếu tố liên quan đến vectơ thỏa mãn một số điều kiện cho trước. Sử dụng định nghĩa và khái niệm có liên quan đến vectơ: Tọa độ các vectơ; độ dài của vectơ; tổng hiệu của hai vectơ; tính các tọa độ trung điểm của đoạn thẳng; trọng tâm của tam giác. Vấn đề 2 . Tích vô hướng và các ứng dụng của tích vô hướng. Sử dụng định nghĩa tích vô hướng và biểu thức tọa độ của tích vô hướng. Sử dụng các công thức tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ. Vấn đề 3 . Lập phương trình mặt cầu – xác định tâm và bán kính mặt cầu có phương trình cho trước. Để viết phương trình mặt cầu (S), ta cần xác định tâm và bán kính mặt cầu. [ads] §2. PHƯƠNG TRÌNH MẶT PHẲNG Vấn đề 1 . Tích có hướng của hai vectơ và các ứng dụng. Sử dụng định nghĩa của tích có hướng của hai vectơ và các tính chất của tích có hướng. Sử dụng các công thức tính diện tích, thể tích. Vấn đề 2 . Viết phương trình tổng quát của mặt phẳng. Loại 1. Viết phương trình mặt phẳng (α) khi biết vectơ pháp tuyến n và một điểm M0 thuộc (α). Loại 2. Viết phương trình mặt phẳng (α) chứa ba điểm A, B, C không thẳng hàng (hay đi qua ba điểm A, B, C). Loại 3. Viết phương trình mặt phẳng (α) chứa điểm M0 và song song với mặt phẳng (β). Loại 4. Viết phương trình mặt phẳng (α) chứa hai điểm M, N và vuông góc với mặt phẳng (β). Vấn đề 3 . Vị trí tương đối của hai mặt phẳng. Vấn đề 4 . Khoảng cách và góc. Khoảng cách từ một điểm đến một mặt phẳng. Góc giữa hai mặt phẳng. Vấn đề 5 . Bài toán liên hệ giữa mặt phẳng và mặt cầu. Viết phương trình mặt cầu, xác định tâm và bán kính của mặt cầu (S). Viết phương trình tiếp diện của mặt cầu. Mặt phẳng (α) tiếp xúc với mặt cầu (S) có tâm I bán kính r ⇔ d(I;(α)) = r. §3. PHƯƠNG TRÌNH ĐƯỜNG THẲNGTRONG KHÔNG GIAN Vấn đề 1 . Viết phương trình tham số và phương trình chính tắc của đường thẳng ∆. Vấn đề 2 . Vị trí tương đối giữa hai đường thẳng trong không gian. Vấn đề 3 . Xét vị trí tương đối giữa đường thẳng và mặt phẳng. Vấn đề 4 . Tính khoảng cách.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm tích có hướng của hai vectơ và ứng dụng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích có hướng của hai vectơ và ứng dụng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. 1. Công thức định thức. 2. Định nghĩa tích có hướng của hai vectơ. 3. Tính chất. 4. Ứng dụng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tọa độ của điểm và véctơ
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tọa độ của điểm và véctơ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. Hệ trục tọa độ trong không gian. II. Tọa độ vectơ. III. Tọa độ của điểm. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn cảnh hình học giải tích không gian trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 27 trang, tuyển chọn 274 câu hỏi và bài tập trắc nghiệm chuyên đề hình học giải tích trong không gian có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020
Phương pháp tọa độ trong không gian trong các đề thi thử THPTQG môn Toán
Tài liệu gồm 1219 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu phương pháp tọa độ trong không gian trong các đề thi thử THPTQG môn Toán: + Trong không gian với hệ trục Oxyz, cho mặt cầu (S): (x + 2)2 + (y − 4)2 + (z − 1)2 = 99 và điểm M(1; 7; −8). Qua điểm M kẻ các tia Ma, Mb, Mc đôi một vuông góc nhau và cắt mặt cầu tại điểm thứ hai tương ứng là A, B, C. Biết rằng mặt phẳng (ABC) luôn đi qua một điểm cố định K(xk; yk; zk). Tính giá trị P = xk + 2yk − zk. + Trong không gian Oxyz, cho mặt cầu (S) : (x − 2)2 + (y − 4)2 + (z − 6)2 = 24 và điểm A(−2; 0; −2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω). từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa (ω), kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω0). Biết rằng khi (ω) và (ω0) có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó. [ads] + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2) và B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x2 + y2 + z2 − 4x + 2my − 2(m + 1)z + m2 + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1. + Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(1; 2; 1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho độ dài OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (α). + Trong không gian Oxyz, cho hai mặt phẳng (P): x + 2y − 2z + 2018 = 0, (Q): x + my + (m − 1)z + 2017 = 0 (m là tham số thực). Khi hai mặt phẳng (P) và (Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q)?