Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào môn Toán (chung) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định

Nội dung Đề vào môn Toán (chung) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định Bản PDF - Nội dung bài viết Đề thi vào lớp 10 môn Toán trường chuyên Lê Hồng Phong Nam Định năm học 2022-2023 Đề thi vào lớp 10 môn Toán trường chuyên Lê Hồng Phong Nam Định năm học 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 môn Toán trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định. Đề thi được chia thành Đề 1 dành cho học sinh thi vào các lớp chuyên tự nhiên và Đề 2 dành cho học sinh thi vào các lớp chuyên xã hội. Kỳ thi sẽ được tổ chức vào thứ Tư ngày 25 tháng 05 năm 2022. Trích dẫn một số câu hỏi từ đề thi: + Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi I là trung điểm của BC và D là điểm đối xứng với A qua OM. Chứng minh tứ giác MAOI nội tiếp và tính MD2 = MB.MC. Tiếp tuyến tại B của (O) cắt OI tại F. Chứng minh tam giác OMI và OFH đồng dạng từ đó suy ra ba điểm A, D, F thẳng hàng. Chứng minh tứ giác BHOC nội tiếp và tính HB.MC = MB.HC. + Tìm toạ độ điểm M là giao điểm của đường thẳng y = 2x + 4 với trục Ox. + Biết hình tròn có chu vi là 47 cm. Tính diện tích hình tròn đó. Đề thi Toán môn chung năm 2022-2023 của trường chuyên Lê Hồng Phong Nam Định mang đến những câu hỏi thú vị, đa dạng và phong phú, giúp học sinh thử sức và chinh phục thách thức trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Võ Nguyên Giáp - Quảng Bình
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Võ Nguyên Giáp – Quảng Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi diễn ra vào ngày 16 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Võ Nguyên Giáp – Quảng Bình : + Cho phương trình x2 − (m − 1)x − m2 + m − 2 = 0 (1) (với m là tham số). Gọi x1, x2 là hai nghiệm của phương trình (1), tìm m để Q = (x1/x2)^2 + (x2/x1)^3 đạt giá trị lớn nhất. + Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của T = (a − 1)3 + (b − 1)3 + (c − 1)3. + Cho tam giác đều ABC cố định nội tiếp đường tròn (O). Đường thẳng d thay đổi nhưng luôn đi qua A và cắt cung nhỏ AB tại E (E không trùng với hai điểm A và B). Đường thẳng d cắt hai tiếp tuyến tại B và C của đường tròn (O) lần lượt tại M và N. Gọi F là giao điểm của MC và BN. Chứng minh rằng: 1. ∆CAN đồng dạng với ∆BMA, ∆MBC đồng dạng với ∆BCN. 2. Bốn điểm B, M, E, F cùng nằm trên một đường tròn. 3. Đường thẳng EF luôn đi qua một điểm cố định khi đường thẳng d thay đổi.
Đề thi vào 10 chuyên môn Toán năm 2020 2021 trường ĐHKH Huế (vòng 1)
Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) gồm có 02 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) : + Đầu tháng 2 năm 2020, khi đang vào mùa thu hoạch, giá tôm hùm bất ngờ giảm mạnh do dịch bệnh COVID-19. Gia đình ông A cho biết vì sợ tôm chết nên phải bán 40% số tôm với giá 400 nghìn đồng mỗi kilôgam. Sau đó nhờ phong trào “giải cứu tôm hùm” nên đã bán được số tôm còn lại với giá 700 nghìn đồng mỗi kilôgam. Ông A cho biết đã đầu tư vào hồ tôm 250 triệu đồng và nếu trừ đi số tiền đầu tư này thì gia đình ông lãi được 40 triệu đồng (không kể công chăm sóc gần 1 năm của gia đình). Ông A cũng cho biết thêm rằng, nếu không có dịch COVID-19 thì thương lái sẽ mua hết số tôm hùm với giá 1,2 triệu đồng mỗi kilôgam. Hỏi nếu không có mùa dịch COVID-19 thì gia đình ông A thu được lợi nhuận bao nhiêu? + Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Qua A kẻ các tiếp tuyến AM và AN với đường tròn (O), với M và N là các tiếp điểm. Dựng cát tuyến ABC với đường tròn (O) sao cho B nằm giữa A, C đồng thời B và M nằm cùng phía so với đường thẳng AO. 1. Chứng minh tứ giác ANOM nội tiếp được đường tròn và AB.AC = AM2. 2. Gọi H là giao điểm của AO và MN . Chứng minh tứ giác OHBC nội tiếp được đường tròn. 3. Qua B kẻ đường thẳng song song với đường thẳng MC lần lượt cắt AM và MN tại E và F. Chứng minh HM là phân giác trong của góc BHC và B là trung điểm của đoạn thẳng EF. [ads] + Cho phương trình x2 + (2m − 1)x − 3 = 0. 1. Chứng minh rằng với mọi giá trị của m , phương trình luôn có hai nghiệm phân biệt, trái dấu. 2. Tìm tất cả các giá trị m để phương trình có tổng hai nghiệm là một số dương. 3. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x21 + x22 = 7.
Đề thi vào 10 chuyên môn Toán năm 2020 - 2021 trường ĐHKH Huế (vòng 2)
Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2) gồm có 02 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2) : + Cho A là tập gồm 17 số tự nhiên mà các chữ số của mỗi số được lấy từ tập {0 ; 1 ; 2 ; 3 ; 4}. Chứng minh rằng có thể chọn được 5 số từ tập A sao cho tổng của 5 số này chia hết cho 5. + Một hình chữ nhật bị các đường thẳng chia thành các đa giác như hình vẽ. Trong đó có 3 tam giác và 2 tứ giác có diện tích là 5, 6, 10, x và 54. Hãy tìm giá trị của x. + Cho P là parabol có phương trình y = x2, A là điểm có tọa độ (3; 5) và m là tham số có giá trị dương. 1. Viết phương trình đường thẳng qua A và có hệ số góc m. 2. Tìm giá trị nhỏ nhất của m để d cắt P. 3. Giả sử d cắt P tại 2 điểm có hoành độ x1 và x2. Tìm mối liên hệ giữa x1 và x2.
Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Quốc học Huế
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế gồm 02 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế : + Trên mặt phẳng tọa độ Oxy, cho đường thẳng (d) : y = mx+ 4 (m 6= 0) và parabol (P) : y = 2×2. Gọi A, B là các giao điểm của (d) và (P); A0 và B0 lần lượt là hình chiếu vuông góc của A và B lên trục hoành. Tìm m để diện tích tứ giác ABB0A0 bằng 15 cm2 (đơn vị đo trên các trục là xentimét). + Chứng minh phương trình x2 − (m2 − 1) x + m(m − 1)2 = 0 (x là ẩn số) luôn có nghiệm với mọi giá trị của m. Gọi x1, x2 là các nghiệm của phương trình đã cho, giả sử x1 ≤ x2, tìm m để x2 đạt giá trị nhỏ nhất. [ads] + Cho hai đường tròn (O) và (O0) cắt nhau tại hai điểm phân biệt A và B (điểm O nằm ngoài đường tròn (O0)). Từ một điểm M trên tia đối của tia AB, vẽ các tiếp tuyến MC, MD với đường tròn (O) (C, D là các tiếp điểm và D nằm trong đường tròn (O0)). Hai đường thẳng AC và AD cắt đường tròn (O0) lần lượt tại E và F (E và F không trùng với A), hai đường thẳng CD và EF cắt nhau tại I. 1. Chứng minh tứ giác BCEI nội tiếp và EI · BD = BI · AD. 2. Chứng minh I là trung điểm của đoạn thẳng EF. 3. Chứng minh khi M thay đổi trên tia đối của tia AB thì đường thẳng CD luôn đi qua một điểm cố định.