Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện của hội Chữ thập đỏ huyện Ứng Hòa, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5, 6, 7 nhưng sau đó chia theo tỉ lệ 4, 5, 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC nhọn (AB < AC). Vẽ về phía ngoài ABC các tam giác đều là ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao điểm của AB và DC. 1) Chứng minh ADC = ABE. 2) Chứng minh DIB = 60°. 3) Gọi M, N lần lượt là trung điểm CD và BE. Chứng minh AMN đều. 4) Chứng minh IA là tia phân giác DIE. + Cho 100 số hữu tỉ trong đó tích của bất kỳ ba số nào cũng là một số âm. Chứng minh rằng tất cả 100 số đó đều là số âm.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát đội tuyển Toán 7 lần 5 năm 2023 - 2024 trường THCS Xuân Lẹ - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 7 lần 5 năm học 2023 – 2024 trường THCS Xuân Lẹ, huyện Thường Xuân, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm tất cả các số x, y nguyên dương, p nguyên tố thỏa mãn: x2 – 3xy + p2y2 = 12p. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn 2×5 – 1 chia hết cho y4 và 2y2 + 1 chia hết cho x4. + Cho tam giác ABC không cân tại A, cạnh BC cố định, đỉnh A di động. Vẽ phân giác trong AD của tam giác. Trên tia CA lấy điểm E sao cho CE = AB. Gọi I là trung điểm của AE. Chứng minh rằng đường thẳng đi qua I và song song với AD luôn đi qua một điểm cố định.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Anh Sơn – Nghệ An : + Một người mang một số tiền vào siêu thị mua hoa quả và nhẩm tính với số tiền đó có thể mua được 3kg nho hoặc 4kg táo hoặc 5kg mận. Tính giá tiền mỗi loại, biết 3kg táo đắt hơn 2kg mận là 210 000 đồng. + Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm BC. a) Chứng minh các tam giác DAB và DAC vuông cân. b) Lấy điểm M bất kỳ trên đoạn CD. Kẻ các đoạn thẳng BE và CF vuông góc với đường thẳng AM (E; F thuộc đường thẳng AM). Chứng minh rằng: BE = AF. c) Chứng minh tam giác DEF vuông cân. + Cho ABC cân tại B, có ABC = 80 độ. Lấy điểm I nằm trong tam giác sao cho IAC = 10 độ và ICA = 30 độ. Tính số đo AIB.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Quảng Ninh - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Chứng minh rằng với mọi số nguyên dương m và n thì mn(m2 – 1)(n2 + 2) chia hết cho 9. + Cho đa thức f(x), biết rằng khi chia f(x) cho x – 1 thì dư 3, chia cho x – 2 thì dư 5, chia cho (x – 1)(x – 2) thì được thương là 2x và còn dư. Tìm đa thức f(x). + Cho tam giác ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC tại H, tia phân giác của HAC cắt BC tại D. a) Chứng minh BA = BD. b) Trên tia đối của tia AB lấy điểm K sao cho AK = HD. Kẻ DE vuông góc với AC tại E. Chứng minh KE // AD. c) Gọi F là giao điểm của HK với AD, chứng minh F là trung điểm của đoạn thẳng HK.