Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng góc trong không gian

Tài liệu gồm 36 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề góc trong không gian, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3: Vectơ Trong Không Gian, Quan Hệ Vuông Góc. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm được khái niệm góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. + Nắm được phương pháp tính góc trong mỗi trường hợp cụ thể. Kĩ năng: + Thành thạo các bước tính góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. + Vận dụng các quy tắc tính góc vào giải các bài tập liên quan. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1. Góc giữa hai đường thẳng. Dạng 2. Góc giữa đường thẳng và mặt phẳng. + Bài toán 1. Bài tập củng cố lý thuyết. + Bài toán 2. Xác định góc giữa đường thẳng và mặt phẳng. Dạng 3. Góc giữa hai mặt phẳng. + Bài toán 1. Các bài tập củng cố lý thuyết. + Bài toán 2. Xác định góc giữa hai mặt phẳng bằng cách dùng định nghĩa. + Bài toán 3. Xác định góc giữa hai mặt phẳng dựa trên giao tuyến. + Bài toán 4. Xác định góc giữa hai mặt phẳng bằng cách dùng đinh lý hình chiếu. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán quan hệ vuông góc trong không gian - Lê Duy Hiền
Tài liệu gồm 38 trang phân dạng và hướng dẫn giải các dạng toán quan hệ vuông góc trrong không gian, tài liệu do thầy Lê Duy Hiền biên soạn. Trong môn toán ở trường phổ thông phần hình học không gian giữ một vai trò, vị trí hết sức quan trọng. Ngoài việc cung cấp cho học sinh kiến thức, kĩ năng giải toán hình học không gian, còn rèn luyện cho học sinh đức tính, phẩm chất của con người lao động mới: cẩn thận, chính xác, có tính kỉ luật, tính phê phán, tính sáng tạo, bồi dưỡng óc thẩm mĩ, tư duy sáng tạo cho học sinh. Tuy nhiên trong quá trình giảng dạy tôi nhận thấy học sinh lớp 11 rất e ngại học môn hình học không gian vì các em nghĩ rằng nó trừu tượng, thiếu tính thực tế. Chính vì thế mà có rất nhiều học sinh học yếu môn học này, về phần giáo viên cũng gặp không ít khó khăn khi truyền đạt nội dung kiến thức và phương pháp giải các dạng bài tập hình học không gian. [ads] Hình học không gian là một phần rất quan trọng trong nội dung thi đại học của Bộ giáo dục, nếu học sinh không nắm kỹ bài thì các em sẽ gặp nhiều lúng túng khi làm hai câu trong về hình học không gian trong đề thi đại học. Qua nhiều năm giảng dạy môn học này tôi cũng đúc kết được một số kinh nghiệm nhằm giúp các em tiếp thu kiến thức được tốt hơn, từ đó mà chất lượng giảng dạy cũng như học tập của học sinh ngày được nâng lên. Do đây là phần nội dung kiến thức mới nên nhiều học sinh còn chưa quen với tính tư duy trừu tượng của nó, nên tôi nghiên cứu nội dung này nhằm tìm ra những phương pháp truyền đạt phù hợp với học sinh, bên cạnh cũng nhằm tháo gỡ những vướng mắc, khó khăn mà học sinh thường gặp phải với mong muốn nâng dần chất lượng giảng dạy nói chung và môn hình học không gian nói riêng. Từ lý do trên tôi đã khai thác, hệ thống hóa các kiến thức, tổng hợp các phương pháp thành một chuyên đề: Các dạng Toán về quan hệ vuông góc trong không gian
Chuyên đề trắc nghiệm quan hệ vuông góc
Tài liệu gồm 55 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề quan hệ vuông góc, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. + Dạng 1: Chứng minh đường thẳng vuông góc với mặt phẳng. + Dạng 2: Chứng minh hai đường thẳng vuông góc bằng cách chứng minh đường thẳng này vuông góc với mặt phẳng chứa đường thẳng kia. Vấn đề 2: HAI MẶT PHẲNG VUÔNG GÓC. + Dạng 1: Chứng minh hai mặt phẳng vuông góc. + Dạng 2: Bài toán dựng thiết diện có yếu tố vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm vectơ trong không gian
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vectơ trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Chứng minh các đằng thức vectơ, chứng minh 3 vectơ đồng phẳng. Dạng 2: Tính độ dài đoạn thẳng, góc giữa hai vectơ, chứng minh 2 đường thẳng vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Trắc nghiệm quan hệ vuông góc trong các đề thi thử Toán 2018
Tài liệu gồm 379 trang tổng hợp câu hỏi và bài tập trắc nghiệm vectơ trong không gian, quan hệ vuông góc có lời giải chi tiết trong các đề thi thử Toán 2018 của các trường THPT và sở GD – ĐT trên cả nước. Trích dẫn tài liệu trắc nghiệm quan hệ vuông góc trong các đề thi thử Toán 2018 : + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH 2017 – 2018) Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 45 độ. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng? (Số đo góc được làm tròn đến hàng đơn vị). [ads] + (THPT Sơn Tây – Hà Nội – lần 1 – NH 2017 – 2018) Cho lăng trụ ABC.A’B’C’ có các mặt bên là hình vuông cạnh a. Gọi D, E lần lượt là trung điểm các cạnh BC, A’C’. Tính khoảng cách giữa hai đường thẳng AB’ và DE theo a. + (THPT Tam Phước – Đồng Nai – lần 1 – NH 2017 – 2018) Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AD = a, AB = 2a, BC = 3a, SA = 2a, H là trung điểm cạnh AB, SH là đường cao của hình chóp S.ABCD. Tính khoảng cách từ điểm A đến mặt phẳng (SCD).