Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Tây Ninh

Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán (không chuyên) năm 2023-2024 sở GDĐT Tây Ninh Đề thi tuyển sinh Toán (không chuyên) năm 2023-2024 sở GDĐT Tây Ninh Sytu xin gửi đến quý thầy cô và các em học sinh bộ đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023-2024 của sở Giáo dục và Đào tạo tỉnh Tây Ninh. Kỳ thi này sẽ diễn ra vào ngày 02 tháng 06 năm 2023. Trích đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023-2024 sở GD&ĐT Tây Ninh: 1. Hệ thống cáp treo núi Bà Đen tỉnh Tây Ninh bao gồm hai tuyến Vân Sơn và Chùa Hang, với tổng cộng 191 cabin. Mỗi cabin có thể chứa 10 người. Nếu tất cả các cabin trên hai tuyến đều chứa đủ số người theo qui định, thì số người ở tuyến Vân Sơn sẽ nhiều hơn số người ở tuyến Chùa Hang là 350 người. Hãy tính số cabin của mỗi tuyến. 2. Cho đường tròn (O) và điểm A nằm ngoài (O). Vẽ tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm), và gọi D là trung điểm của AC. Đường thẳng BD cắt (O) tại E (khác B) và BC cắt OA tại F. Chứng minh rằng bốn điểm C, D, E, F cùng thuộc một đường tròn. 3. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là trung điểm của HB và HC. Kẻ đường thẳng MK vuông góc với AN tại K, MK cắt đường cao AH tại I. Hãy tính tỉ lệ độ dài AH so với AI.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội được biên soạn nhằm giúp các em học sinh lớp 9 đang học tập tại các trường THCS trên địa bàn quận Hai Bà Trưng, Hà Nội nắm được dạng đề và rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT trong thời gian sắp tới, đề thi có lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh – Hà Nội được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 15 tháng 05 năm 2018, đề nhằm giúp các em học sinh lớp 9 làm quen với hình thức thi cử, nắm được cấu trúc đề, các dạng toán thường gặp trong đề tuyển sinh vào lớp 10 môn Toán, để các em rèn luyện, chuẩn bị cho kỳ thi vượt cấp sắp tới, đề thi có đáp án và lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mỹ Xá - Nam Định
Đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 trường THCS Mỹ Xá – Nam Định gồm 2 trang với 2 phần: phần trắc nghiệm khách quan gồm 8 câu hỏi, phần tự luận gồm 5 bài toán, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 : + Cho hình chữ nhật ABCD có AB = 3cm, CB = 4cm. Quay hình chữ nhật đó một vòng quanh cạnh AB được một hình trụ. Thể tích hình trụ đó bằng? + Giá trị của m để đường thẳng y = x – 2 và đường thẳng y = 2x + m – 1 cắt nhau tại một điểm nằm trên trục tung là? [ads] + Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Đường chéo AC và BD cắt nhau tại E. Gọi F là hình chiếu của E trên AD. Đường thẳng CF cắt đường tròn tại điểm thứ hai là M (M khác C). Gọi N là giao điểm của BD và CF. 1. Chứng minh tứ giác ABEF và tứ giác CDFE là các tứ giác nội tiếp. 2. Chứng minh FA là tia phân giác của góc BFM và BE.DN = EN.BD. 3. Gọi K là trung điểm của DE. Chứng minh tứ giác BCKF nội tiếp.
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy - Nam Định
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán THPT năm 2018 : + Cắt một hình cầu bởi một mặt phẳng cách tâm hình cầu 4dm. Biết bán kính hình cầu bằng 5dm. Chu vi mặt cắt bằng? + Cho tam giác IAB vuông tại I. Quay tam giác IAB một vòng quanh cạnh IA cố định ta được một hình? [ads] + Trong mặt phẳng tọa độ Oxy cho Parabol 2 (P): y = x^2 và đường thẳng (d): y = 4x + 1 – m. 1) Cho m = 4, hãy tìm tất cả các hoành độ giao điểm của (d) và (P). 2) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có tung độ là y1; y2 thỏa mãn √y1.√y2 = 5.