Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 9 - Nguyễn Chín Em (Tập 1)

Tài liệu gồm 208 trang được biên soạn bởi thầy Nguyễn Chín Em, tuyển tập lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán 9 giai đoạn học kỳ 1. Khái quát nội dung tài liệu tự học Toán 9 – Nguyễn Chín Em (Tập 1): PHẦN I . ĐẠI SỐ Chương 1 . Căn bậc hai, căn bậc ba. 1. Căn bậc hai. A. Tóm tắt lý thuyết. 1. Căn bậc hai của một số. 2. So sánh các căn bậc hai số học. B. Phương pháp giải toán. 2. Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Phá dấu trị tuyệt đối. 2. Điều kiện để √A có nghĩa. 3. Sử dụng hằng đẳng thức √A^2 = |A|. 4. Phương trình – bất phương trình. C. Bài tập tự luyện. 3. Liên hệ giữa phép nhân và phép khai phương. A. Tóm tắt lí thuyết. 1. Định lí. 2. Khai phương một tích. 3. Nhân các căn thức bậc hai. B. Các dạng toán. C. Bài tập tự luyện. 4. Liên hệ giữa phép chia và phép khai phương. A. Tóm tắt lí thuyết. B. Dạng toán. 1. Khai phương một thương. 2. Chia hai căn thức bậc hai. C. Phương pháp giải toán. D. Bài tập tự luyện. 5. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. A. Tóm tắt lí thuyết. 1. Đưa một thừa số ra ngoài dấu căn. 2. Đưa một thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy dấu căn. 4. Trục căn thức ở mẫu. B. Các dạng toán. 1. Đưa một thừa số vào trong hoặc ra ngoài dấu căn. 2. Khử mẫu của biểu thức dưới dấu căn – phép nhân liên hợp. 3. Sử dụng các phép biến đổi căn thức bậc hai cho bài toán rút gọn và chứng minh đẳng thức. 4. Sử dụng các phép biến đổi căn thức bậc hai giải phương trình. C. Bài tập tự luyện. 6. Rút gọn biểu thức có chứa căn bậc hai. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Thực hiện phép tính rút gọn biểu thức có chứa căn bậc hai. 2. Giải phương trình. C. Bài tập tự luyện. 7. Căn bậc ba – căn bậc n. A. Tóm tắt lí thuyết. 1. Căn bậc ba. B. Phương pháp giải toán. 1. Thực hiện các phép tính với căn bậc 3 và bậc n. 2. Khử mẫu chứa căn bậc ba. 3. Giải phương trình chứa căn bậc ba. C. Bài tập tự luyện. Chương 2 . Hàm số bậc nhất. 1. Nhắc lại và bổ sung khái niệm về hàm số. A. Tóm tắt lí thuyết. 1. Khái niệm hàm số và đồ thị. 2. Tập xác định của hàm số. 3. Hàm số đồng biến, nghịch biến. B. Các dạng toán. 1. Sự xác định của một hàm số. 2. Tìm tập xác định của hàm số. 3. Xét tính chất biến thiên của hàm số. C. Bài tập tự luyện. 2. Hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Định nghĩa. B. Phương pháp giải toán. C. Bài tập luyện tập. 3. Đồ thị của hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số y = ax với a khác 0. 2. Đồ thị của hàm số y = ax + b với a khác 0. 3. Cách vẽ đồ thị hàm số bậc nhất. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Đường thẳng song song và đường thẳng cắt nhau. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Hệ số góc của đường thẳng. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. 1. Hệ số góc của đường thẳng. 2. Lập phương trình đường thẳng biết hệ số góc. C. Bài tập tự luyện. [ads] PHẦN II . HÌNH HỌC Chương 1 . Hệ thức lượng trong tam giác vuông. 1. Một số hệ thức về cạnh và đường cao của tam giác vuông. A. Tóm tắt lí thuyết. 1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. 2. Một số hệ thức liên quan tới đường cao. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. 2. Tỉ số lượng giác. A. Tóm tắt lí thuyết. 1. Tỉ số lượng giác. 2. Giá trị lượng giác của các cung đặc biệt. 3. Hàm số lượng giác của hai góc phụ nhau. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. Chương 2 . Đường tròn. 1. Sự xác định đường tròn – tính chất đối xứng của đường tròn. A. Tóm tắt lí thuyết. 1. Nhắc lại về đường tròn. 2. Cách xác định đường tròn. 3. Tâm đối xứng – trục đối xứng. B. Các dạng toán. 1. Chứng minh nhiều điểm cùng nằm trên một đường tròn. 2. Quỹ tích điểm là một đường tròn. 3. Dựng đường tròn. C. Bài tập tự luyện. 2. Đường kính và dây cung của đường tròn. A. Tóm tắt lí thuyết. 1. So sánh độ dài của đường kính và dây. 2. Quan hệ vuông góc giữa đường kính và dây. B. Phương pháp giải toán. 1. Giải bài toán định tính và định lượng. 2. Giải bài toán dựng hình. 3. Giải bài toán quỹ tích. C. Bài tập rèn luyện. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Vị trí tương đối của đường thẳng và đường tròn. A. Tóm tắt lý thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Tiếp tuyến của đường tròn. A. Tóm tắt lý thuyết. 1. Các tính chất của tiếp tuyến. B. Phương pháp giải toán. 1. Dựng tiếp tuyến của đường tròn. 2. Giải bài toán định tính và định lượng. 3. Chứng minh một đường thẳng là tiếp tuyến của đường tròn. 4. Sử dụng tính chất tiếp tuyến để tìm quỹ tích. C. Bài tập tự luyện. 6. Tính chất của hai tiếp tuyến cắt nhau. A. Tóm tắt lý thuyết. 1. Đường tròn nội tiếp tam giác. 2. Đường tròn bàng tiếp tam giác. B. Phương pháp giải toán. C. Bài tập luyện tập. D. Hướng dẫn – đáp số. 7. Vị trí tương đối của hai đường tròn. A. Tóm tắt lý thuyết. 1. Hai đường tròn có hai điểm chung. 2. Hai đường tròn chỉ có một điểm chung. 3. Hai đường tròn không có điểm chung. 4. Một số tính chất. B. Phương pháp giải toán. C. Bài tập luyện tập.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình
Nội dung Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình Bản PDF - Nội dung bài viết Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình Trong tài liệu này, có 26 trang hướng dẫn cách giải các bài toán bằng cách lập phương trình, hệ phương trình trong chương trình Toán lớp 9. Phương pháp giải chung bao gồm ba bước chính: Bước 1. Lập phương trình hoặc hệ phương trình: Đầu tiên, ta cần lập phương trình hoặc hệ phương trình bằng cách chọn ẩn, đơn vị cho ẩn và điều kiện thích hợp cho ẩn. Sau đó, biểu diễn các đại lượng khác theo ẩn và dựa vào điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2. Giải phương trình hoặc hệ phương trình: Tiếp theo, ta giải phương trình hoặc hệ phương trình đã lập được ở bước 1. Bước 3. Nhận định, so sánh kết quả: Cuối cùng, ta nhận định, so sánh kết quả bài toán và tìm ra kết quả thích hợp, sau đó trả lời bằng câu viết và nêu rõ đơn vị của đáp số. Các dạng toán cơ bản mà bạn sẽ gặp trong tài liệu bao gồm: chuyển động, hình học, công việc làm chung, chảy nước, tìm số, %, và kiến thức vật lý, hóa học. Để giải bài toán bằng cách lập phương trình, hệ phương trình, bạn cần lưu ý một số công thức quan trọng như: quan hệ giữa thời gian t, quãng đường s và vận tốc v, chuyển động tàu thuyền khi có tác động dòng nước, khối lượng công việc A, năng suất lao động N và thời gian làm việc T.
Các dạng toán căn bậc ba Nguyễn Chí Thành
Nội dung Các dạng toán căn bậc ba Nguyễn Chí Thành Bản PDF - Nội dung bài viết Các dạng toán căn bậc ba Nguyễn Chí Thành Các dạng toán căn bậc ba Nguyễn Chí Thành Tài liệu này bao gồm 17 trang tập hợp các bài toán liên quan đến căn bậc ba (hay còn gọi là căn bậc 3) dành cho học sinh lớp 9. Mỗi bài toán được giải chi tiết để giúp học sinh hiểu rõ hơn về chủ đề này. Các dạng toán trong tài liệu bao gồm: Dạng 1: Thực hiện phép tính với căn bậc 3 Dạng 2: Chứng minh các đẳng thức liên quan đến căn bậc 3 Dạng 3: So sánh hai căn bậc 3 với nhau Dạng 4: Giải các phương trình có chứa căn bậc 3 Đây là tài liệu hữu ích giúp học sinh rèn luyện kỹ năng giải toán và nắm vững kiến thức về căn bậc ba. Mong rằng tài liệu sẽ giúp ích cho các em trong quá trình học tập.
Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2)
Nội dung Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2) Bản PDF - Nội dung bài viết Chinh phục lớp 9 môn Toán với sách Đại số Tập 2 Chinh phục lớp 9 môn Toán với sách Đại số Tập 2 Sách "Chinh phục lớp 9 môn Toán" bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2) là tài liệu hữu ích giúp các học sinh nắm vững kiến thức và phương pháp giải các dạng toán trong chương trình Toán lớp 9. Sách được tổ chức theo từng dạng toán và mỗi bài học đều bao gồm các phần sau: A. Tóm tắt kiến thức cần học: Giúp học sinh hiểu rõ về nội dung cần nắm được trong bài toán và chuẩn bị tinh thần đúng đắn cho quá trình học tập. B. Phương pháp giải các dạng toán: Hướng dẫn chi tiết các phương pháp giải các dạng toán cụ thể, giúp học sinh áp dụng linh hoạt và hiệu quả trong việc giải các bài tập. Các nội dung chính trong sách bao gồm: + Chương 3. Hệ hai phương trình bậc nhất hai ẩn: Đề cập đến phương trình bậc nhất hai ẩn, giải hệ phương trình bậc nhất hai ẩn và cách giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn. + Chương 4. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn: Thảo luận về hàm số y = ax^2, phương trình bậc hai một ẩn, cách quy về phương trình bậc hai và phương pháp giải toán bằng lập phương trình. Với cách trình bày rõ ràng, dễ hiểu và sự tổ chức logic, sách Đại số Tập 2 chắc chắn sẽ giúp các học sinh tự tin và thành công trong việc học môn Toán ở cấp độ lớp 9.
Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)
Nội dung Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1) Bản PDF - Nội dung bài viết Nội dung sách "Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)" Nội dung sách "Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)" Sách được trình bày theo từng dạng toán, giúp học sinh dễ dàng tiếp cận kiến thức. Mỗi bài gồm các phần sau: A. Tóm tắt kiến thức cần học: Giúp học sinh nắm vững những kiến thức cơ bản để giải các dạng toán. B. Phương pháp giải các dạng toán: Hướng dẫn chi tiết cách giải từng bài toán, giúp học sinh áp dụng kiến thức một cách linh hoạt. Các nội dung chính trong sách bao gồm: + Chương 1. Căn thức 1. Căn bậc hai - Căn thức bậc hai 2. Liên hệ giữa phép khai phương và phép nhân, phép chia 3. Biến đổi đơn giản biểu thức chứa căn thức bậc hai 4. Rút gọn biểu thức chứa căn thức bậc hai 5. Căn bậc 3 + Chương 2. Hàm số bậc nhất 1. Khái niệm hàm số 2. Hàm số bậc nhất Qua sơ đồ tư duy Phạm Nguyên, cuốn sách không chỉ giúp học sinh hiểu rõ kiến thức mà còn hướng dẫn cách áp dụng trong thực tế, từ đó giúp học sinh tự tin vượt qua môn Toán trong lớp 9.