Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nội dung ôn tập học kì 1 Toán 10 năm 2023 - 2024 trường THPT Trần Phú - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 tài liệu đề cương hướng dẫn nội dung ôn tập học kì 1 môn Toán 10 năm học 2023 – 2024 trường THPT Trần Phú, quận Hoàn Kiếm, thành phố Hà Nội. CHƯƠNG 1 : MỆNH ĐỀ – TẬP HỢP. 1. Kiến thức: + Trình bày được định nghĩa mệnh đề, mệnh đề phủ định, mệnh đề kéo theo, mệnh đề đảo, mệnh đề tương đương, khái niệm mệnh đề chứa biến và nêu được ý nghĩa kí hiệu. + Trình bày được khái niệm tập hợp, tập con, hai tập hợp bằng nhau, các tập con của tập số thực. 2. Kĩ năng: + Xác định được tính đúng sai của mệnh đề. Biết lập mệnh đề đảo của một mệnh đề cho trước. Phân biệt được giả thiết và kết luận. Biết sử dụng thuật ngữ: điều kiện cần, điều kiện đủ, điều kiện cần và điều kiện đủ. + Sử dụng đúng các kí hiệu. Biểu diễn được tập hợp bằng các cách: liệt kê hoặc chỉ ra tính chất đặc trưng của các phần tử. Thực hiện thành thạo các phép toán lấy giao, hợp của hai tập hợp, phần bù của một tập hợp trong tập hợp khác, hiệu giữa hai tập hợp. CHƯƠNG 2 : BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. 1. Kiến thức: + Trình bày được khái niệm bất phương trình, nghiệm của bất phương trình, hai bất phương trình tương đương, các phép biến đổi tương đương bất phương trình. + Trình bày được khái niệm bất phương trình, hệ bất phương trình bậc nhất hai ẩn, nghiệm và miền nghiệm của nó. 2. Kĩ năng: + Xác định được miền nghiệm của bất phương trình, hệ bất phương trình bậc nhất hai ẩn, giải các bài toán thực tế tối ưu. CHƯƠNG 3 : HÀM SỐ VÀ ĐỒ THỊ. 1. Kiến thức: + Trình bày được khái niệm hàm số, tập xác định của hàm số, cách cho hàm số, đồ thị của hàm số, hàm số đồng biến, nghịch biến. + Trình bày được bảng biến thiên và đồ thị của hàm số bậc nhất. Cách vẽ đồ thị hàm số bậc nhất và đồ thị hàm số trên từng khoảng. + Trình bày được sự biến thiên của hàm số bậc hai. + Vẽ đồ thị hàm số bậc hai. 2. Kĩ năng: + Tìm được tập xác định của hàm số. Xét được tính đồng biến, nghịch biến của một số hàm số trên một khoảng cho trước. + Tìm toạ độ giao điểm của hai đường thẳng có phương trình cho trước. Khảo sát sự biến thiên và vẽ đồ thị của hàm số cho bởi các hàm bậc nhất trên các khoảng khác nhau. + Lập được bảng biến thiên của hàm số bậc hai. Vẽ được đồ thị hàm số bậc hai, xác định được: trục đối xứng của đồ thị, các giá trị của x để y. Xác định hàm số bậc hai khi biết tính chất đồ thị. + Trình bày được định lí về dấu của nhị thức bậc nhất, cách giải bất phương trình, hệ BPT bậc nhất một ẩn, định lí về dấu của tam thức bậc hai, cách giải bất phương trình bậc hai và các dạng bất phương trình quy về bậc hai. + Vận dụng được định lí về dấu tam thức bậc hai để giải bất phương trình bậc hai; các bất phương trình quy về bậc hai. Giải một số bài toán liên quan đến phương trình bậc hai như: điều kiện để phương trình có nghiệm, có hai nghiệm trái dấu. Giải một số phương trình, bất phương trình đưa về bậc hai bằng cách đặt ẩn phụ thích hợp hoặc phương trình quy về dạng tích. CHƯƠNG 4 : HỆ THỨC LƯỢNG TRONG TAM GIÁC. VECTƠ. 1. Kiến thức: + Trình bày được định nghĩa tỉ số lượng giác của góc bất kì từ 0 đến 180 và nhớ được giá trị lượng giác của một số góc đặc biệt. + Trình bày được định lý cosin, định lý sin, các công thức tính diện tích tam giác. + Trình bày được khái niệm vectơ, vectơ-không, độ dài vectơ, hai vectơ cùng phương, hai vectơ bằng nhau. + Trình bày được cách xác định tổng, hiệu hai vectơ, quy tắc ba điểm, quy tắc hình bình hành và các tính chất của tổng vectơ: giao hoán, kết hợp, tính chất của vectơ-không. + Trình bày được định nghĩa và các tính chất của tích vectơ với một số. Tính chất trung điểm, trọng tâm; điều kiện để hai vectơ cùng phương, ba điểm thẳng hàng, biểu thị một vectơ theo hai vectơ không cùng phương. + Trình bày được khái niệm góc giữa hai vectơ, tích vô hướng của hai vectơ, các tính chất tích vô hướng. 2. Kĩ năng: + Áp dụng quy tắc tìm GTLG của các góc tù bằng cách đưa về GTLG của các góc nhọn. + Vận dụng định lý cosin, định lý sin, công thức tính diện tích tam giác để giải một số bài toán có liên quan đến tam giác và các bài toán thực tiễn. + Chứng minh hai vectơ bằng nhau. Dựng vectơ. + Vận dụng quy tắc ba điểm, quy tắc hình bình hành khi lấy tổng, hiệu hai vectơ cho trước và chứng minh các đẳng thức vectơ. + Xác định được a = k.b. Diễn đạt được bằng ngôn ngữ vectơ: ba điểm thẳng hàng, trung điểm của một đoạn thẳng, trọng tâm của tam giác, hai điểm trùng nhau. Sử dụng được tính chất trung điểm của đoạn thẳng, trọng tâm của tam giác để giải một số bài toán hình học. + Xác định được góc giữa hai vectơ. Vận dụng được các tính chất của tích vô hướng của hai vectơ trong tính toán, chứng minh đẳng thức, tìm tập hợp điểm thỏa mãn tính chất.

Nguồn: toanmath.com

Đọc Sách

Đề cương HK1 Toán 10 năm 2021 - 2022 trường Lương Ngọc Quyến - Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề cương ôn tập cuối học kỳ 1 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên. HÌNH THỨC KIỂM TRA: Kiểm tra 90 phút: Trắc nghiệm 35 câu – 7 điểm + Tự luận – 3 điểm. NỘI DUNG KIỂM TRA: A – ĐẠI SỐ 1. Mệnh đề – Tập hợp. 2. Hàm số. – Tập xác định của hàm số. – Tính đồng biến, nghịch biến của hàm số. – Hàm số chẵn, hàm số lẻ. – Đồ thị của hàm số. – Sự biến thiên và đồ thị của hàm số bậc nhất, hàm số bậc hai. – Sự biến thiên và đồ thị của hàm số bậc nhất trên từng khoảng. 3. Phương trình. – Phương trình bậc nhất và bậc hai một ẩn. + Giải và biện luận phương trình ax + b = 0. + Giải và biện luận phương trình ax2 + bx + c = 0. + Ứng dụng của Định lý Vi-et cho phương trình bậc hai. – Một số phương trình quy về phương trình bậc nhất hoặc bậc hai. + Giải phương trình chứa ẩn trong dấu giá trị tuyệt đối. + Giải phương trình chứa ẩn ở mẫu thức. + Giải phương trình chứa ẩn trong dấu căn bậc hai. + Giải phương trình bằng phương pháp đặt ẩn phụ. 4. Hệ phương trình bậc nhất, bậc hai. B – HÌNH HỌC 1. Vectơ. – Phương, hướng, độ dài của vectơ; hai vectơ bằng nhau. – Các phép toán vectơ: Tổng, hiệu của hai vectơ (quy tắc 3 điểm, quy tắc hình bình hành …). – Tích của một vectơ với một số. – Biểu diễn một vectơ theo hai vectơ không cùng phương. – Chứng minh ba điểm thẳng hàng. 2. Hệ trục tọa độ. – Tọa độ của vectơ, tọa độ của điểm đối với hệ trục tọa độ. – Chứng minh ba điểm thẳng hàng. 3. Giá trị lượng giác của một góc bất kỳ từ 0o đến 180o. 4. Tích vô hướng của hai vectơ. – Bài toán về tích vô hướng của hai vectơ. – Bài toán về biểu thức tọa độ của tích vô hướng của hai vectơ.
Hướng dẫn ôn tập học kì 1 Toán 10 năm 2021 - 2022 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 tài liệu đề cương hướng dẫn ôn tập học kì 1 Toán 10 năm 2021 – 2022 trường Vinschool – Hà Nội. I. KIẾN THỨC TRỌNG TÂM 1. Đại số: – Mệnh đề, tập hợp, các phép toán trên tập hợp. – Khái niệm hàm số, hàm số bậc nhất, bậc hai và một số vấn đề liên quan: tập xác định, tính chẵn lẻ, hàm số đồng biến, nghịch biến, đồ thị hàm số, tương giao của hai đồ thị. – Điều kiện xác định của phương trình, phương trình tương đương, phương trình hệ quả; các phép biến đổi tương đương, hệ quả. – Giải và biện luận phương trình bậc nhất, bậc hai, định lý Vi-ét và ứng dụng. – Phương trình chứa ẩn ở mẫu số, phương trình chứa dấu giá trị tuyệt đối, phương trình chứa ẩn dưới dấu căn, phương trình qui về phương trình bậc nhất, bậc hai. – Phương trình, hệ phương trình bậc nhất nhiều ẩn (khái niệm, giải hệ phương trình bậc nhất nhiều ẩn, biện luận nghiệm). – Khái niệm và các tính chất của bất đẳng thức, các phép biến đổi tương đương bất đẳng thức, một số bất đẳng thức cơ bản, bất đẳng thức Côsi và các ứng dụng. 2. Hình học: – Vectơ, tổng và hiệu của hai vectơ; quy tắc ba điểm, quy tắc hình bình hành, quy tắc trừ và các tính chất. – Định nghĩa tích vectơ với một số, các tính chất của tích vectơ với một số, điều kiện để hai vectơ cùng phương; tính chất trung điểm của một đoạn thẳng và tính chất trọng tâm của tam giác. – Tọa độ của vectơ, tọa độ của điểm. – Biểu thức tọa độ của các phép toán vectơ, độ dài vectơ và khoảng cách giữa hai điểm, tọa độ trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác. – Giá trị lượng giác của góc bất kì từ 0° đến 180°. – Tích vô hướng của hai vectơ và biểu thức tọa độ của tích vô hướng. II. BÀI TẬP TỰ LUẬN 1. Đại số. 1.1. Hàm số, hàm số bậc nhất, hàm số bậc hai. 1.2. Phương trình, hệ phương trình. 1.3. Bất đẳng thức. 2. Hình học. III. BÀI TẬP TRẮC NGHIỆM 1. Đại số. 1.1. Mệnh đề, tập hợp và các phép toán. 1.2. Hàm số, hàm số bậc nhất, hàm số bậc hai. 1.3. Phương trình, phương trình bậc nhất, phương trình bậc hai, phương trình chứa dấu giá trị tuyệt đối, phương trình chứa căn thức. 1.4. Hệ phương trình bậc nhất hai ẩn, ba ẩn. 1.5. Bất đẳng thức. 2. Hình học. 2.1. Vectơ. 2.2. Tích vô hướng của hai vectơ.
Lý thuyết trọng tâm và phương pháp giải các dạng chuyên đề Toán 10 học kì 1
Tài liệu gồm 533 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Dương, tổng hợp lý thuyết trọng tâm và phương pháp giải các dạng chuyên đề Toán 10 học kì 1. I ĐẠI SỐ 1. Chương 1. Mệnh đề và tập hợp 2. §1 – Mệnh đề 2. A Tóm tắt lý thuyết 2. B Các dạng toán và bài tập 3. §2 – Tập hợp 7. A Tóm tắt lý thuyết 7. B Các dạng toán và bài tập 7. §3 – Các phép toán trên tập hợp 15. A Tóm tắt lý thuyết 15. B Các dạng toán và bài tập 15. §4 – Các tập hợp số 26. A Tóm tắt lý thuyết 26. B Các dạng toán và bài tập 26. Chương 2. Hàm số bậc nhất và hàm số bậc hai 39. §1 – Đại cương về hàm số 39. A Tóm tắt lý thuyết 39. B Dạng toán và bài tập 41. + Dạng 1. Xác định hàm số và điểm thuộc đồ thị 41. + Dạng 2. Tìm tập xác định của hàm số 44. + Dạng 3. Bài toán tìm tập xác định liên quan đến tham số 53. C Dạng toán và bài tập 57. + Dạng 4. Xét tính chẵn, lẻ của hàm số 57. + Dạng 5. Khảo sát sự biến thiên của hàm số 65. D Bài tập trắc nghiệm 71. §2 – Hàm số bậc nhất 78. A Tóm tắt lý thuyết 78. B Dạng toán và bài tập 80. + Dạng 1. Khảo sát sự biến thiên, tương giao và đồng quy 80. + Dạng 2. Xác định phương trình đường thẳng 89. C Bài tập trắc nghiệm 93. §3 – Hàm số bậc hai 99. A Tóm tắt lý thuyết 99. B Dạng toán và bài tập 100. + Dạng 1. Xác định và khảo sát sự biến thiên của parabol (P) 100. + Dạng 2. BIẾN ĐỔI ĐỒ THỊ VÀ TƯƠNG GIAO 111. Chương 3. Phương trình – hệ phương trình 133. §1 – Đại cương về phương trình 133. A Tóm tắt lý thuyết 133. B Dạng toán và bài tập 134. §2 – Phương trình quy về phương trình bậc 1 – bậc 2 136. A Tóm tắt lý thuyết 136. B Dạng toán và bài tập 137. + Dạng 1. Giải và biện luận phương trình bậc nhất 137. + Dạng 2. Bài toán tìm tham số trong phương trình bậc nhất ax + b = 0 139. C Bài tập áp dụng 139. D Dạng toán và bài tập 151. + Dạng 3. Giải và biện luận phương trình bậc hai: ax2 + bx + c = 0 151. E Dạng toán và bài tập 154. + Dạng 4. Định lý Vi-ét và các bài toán liên quan 154. + Dạng 5. Tìm tất cả tham số m để phương trình có một nghiệm cho trước. Tính nghiệm còn lại? 156. + Dạng 6. Tìm tất cả các giá trị tham số m để phương trình có hai nghiệm trái dấu? 157. + Dạng 7. Tìm tất cả các giá trị tham số m để phương trình có hai nghiệm cùng dấu? 158. + Dạng 8. Tìm tất cả các giá trị tham số m để phương trình có hai nghiệm phân biệt dương? 160. + Dạng 9. Tìm tất cả các giá trị tham số m để phương trình có hai nghiệm phân biệt âm? 161. + Dạng 10. Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt x1, x2 thỏa điều kiện 163. + Dạng 11. Phương trình chứa ẩn dưới dấu trị tuyệt đối 185. + Dạng 12. Phương trình chứa ẩn dưới dấu giá trị tuyệt đối 190. + Dạng 13. Phương trình chứa ẩn dưới dấu giá trị tuyệt đối 193. + Dạng 14. Phương trình chứa ẩn dưới dấu giá trị tuyệt đối 204. + Dạng 15. Phương trình chứa ẩn dưới dấu căn 208. + Dạng 16. Phương trình chứa ẩn dưới dấu căn 208. + Dạng 17. Phương trình chứa ẩn dưới dấu căn 213. + Dạng 18. Phương trình chứa ẩn dưới dấu căn 221. F Bài tập về nhà 242. G Bài tập về nhà 247. §3 – Hệ phương trình 251. A Dạng toán và bài tập 251. + Dạng 1. Hệ phương trình bậc nhất hai ẩn 251. + Dạng 2. Hệ gồm 1 phương trình bậc nhất và 1 phương trình bậc hai 268. + Dạng 3. Hệ phương trình đối xứng và đẳng cấp 277. Chương 4. Bất phương trình & bất đẳng thức 312. §1 – Bất đẳng thức 312. A Tóm tắt lý thuyết 312. B Dạng toán và bài tập 313. + Dạng 1. Chứng minh bất đẳng thức bằng phương pháp biến đổi tương đương 313. + Dạng 2. Các kỹ thuật sử dụng bất đẳng thức Cauchy 324. II HÌNH HỌC 348. Chương 1. Vec-tơ và các phép toán trên vec-tơ 349. §1 – Vec-tơ và các phép toán trên vec-tơ 349. A Tóm tắt lý thuyết 349. B Dạng toán và bài tập 351. + Dạng 1. Chứng minh đẳng thức véc-tơ 351. + Dạng 2. Tìm mô-đun (độ dài) véc-tơ 365. + Dạng 3. Phân tích véc-tơ 377. + Dạng 4. Chứng minh ba điểm thẳng hàng 379. + Dạng 5. Chứng minh song song 390. + Dạng 6. Tìm tập hợp điểm thỏa mãn hệ thức 391. C Bài tập trắc nghiệm 395. §2 – Hệ trục tọa độ 409. A Tóm tắt lý thuyết 409. + Dạng 1. Bài toán cơ bản 410. + Dạng 2. Tìm điểm đặc biệt 414. Chương 2. Tích vô hướng của hai véc-tơ 468. §1 – Tích vô hướng của hai véc-tơ 468. A Tóm tắt lý thuyết 468. B Dạng toán và bài tập 469. + Dạng 1. Tính tích vô hướng và bình phương vô hướng để tính độ dài 469. + Dạng 2. Chứng minh vuông góc 477. + Dạng 3. Chứng minh hệ thức thường gặp 480. C Bài tập trắc nghiệm 488. §2 – Hệ thức lượng trong tam giác 501. A Tóm tắt lý thuyết 501. + Dạng 1. Tính các giá trị cơ bản 502.
Tài liệu học tập HK1 Toán 10 - Huỳnh Phú Sĩ
Tài liệu gồm 101 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, tổng hợp lý thuyết cần nắm và tuyển chọn các câu hỏi và bài tập trắc nghiệm môn Toán 10 (Đại số 10 và Hình học 10) giai đoạn học kỳ 1 (HK1). 1. ĐẠI SỐ 10 Chương 1. Mệnh đề. Tập hợp. Bài 1. Mệnh đề 06. Bài 2. Tập hợp 09. Bài 3. Các phép toán tập hợp 11. Bài 4. Các tập hợp số 13. Bài 5. Số gần đúng. Sai số 16. Chương 2. Hàm số bậc nhất và hàm số bậc hai. Bài 1. Hàm số 18. Bài 2. Hàm số y = ax + b 23. Bài 3. Hàm số bậc hai 26. Chương 3. Phương trình. Hệ phương trình. Bài 1. Đại cương về phương trình 29. Bài 2. Phương trình quy về phương trình bậc nhất, bậc hai 33. Bài 3. Phương trình và hệ phương trình bậc nhất nhiều ẩn 37. 2. HÌNH HỌC 10 Chương 1. Vectơ. Bài 1. Các định nghĩa 42. Bài 2. Tổng và hiệu của hai vectơ 45. Bài 3. Tích của vectơ với một số 49. Bài 4. Hệ trục tọa độ 52.