Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách

Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách, một chủ đề rất quan trọng trong chương trình Hình học 11 chương 3. Bên cạnh tài liệu góc và khoảng cách dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách: A. KIẾN THỨC CƠ BẢN I. GÓC 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. II. KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song. 2. Khoảng cách từ một điểm đến một đường thẳng – khoảng cách giữa hai đường thẳng. B. KỸ NĂNG CƠ BẢN + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến mặt phẳng; biết cách khoảng cách giữa hai mặt phẳng song song. + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến một đường thẳng; biết cách tính khoảng cách giữa hai đường thẳng song song; khoảng cách giữa hai đường thẳng chéo nhau; khoảng cách từđường thẳng đến mặt phẳng song song. + Nhớ và vận dụng được công thức góc giữa hai đường thẳng; góc giữa đường thẳng và mặt phẳng; góc giữa hai mặt phẳng. + Áp dụng được góc và khoảng cách vào các bài toán khác. C. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ
Tài liệu gồm 13 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT 2020, hướng dẫn giải bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ, được phát triển dựa trên câu 13 đề thi tham khảo THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ: 1. Cho điểm M(x;y;z): Hình chiếu của điểm M trên Ox là M1(x;0;0); Hình chiếu của điểm M trên Oy là M2(0;y;0); Hình chiếu của điểm M trên Oz là M3(0;0;z); Hình chiếu của điểm M trên (Oxy) là M4(x;y;0); Hình chiếu của điểm M trên (Oyz) là M5(0;y;z); Hình chiếu của điểm trên (Ozx) là M6(x;0;z). 2. Tìm hình chiếu của điểm A trên mặt phẳng (α). + Viết phương trình đường thẳng d đi qua A và vuông góc với (α). + Hình chiếu H của điểm A là giao điểm của đường thẳng d và (α). [ads] 3. Tìm hình chiếu d’ của đường thẳng d trên mặt phẳng (α). Cách 1 : – Nếu đường thẳng d song song với (α) thì d // d’. + Lấy điểm M thuộc đường thẳng d và tìm hình chiếu M’ của điểm M trên (α). + Đường thẳng d’ đi qua M’ và song song với đường thẳng d. – Nếu đường thẳng d cắt (α) tại M. + Lấy điểm N thuộc đường thẳng d và tìm hình chiếu N’ của N trên (α). + Đường thẳng d’ đi qua hai điểm là M và N’. Cách 2 : + Viết phương trình mặt phẳng (β) chứa đường thẳng d và vuông góc với (α). + Khi đó đường thẳng d’ là giao tuyến của hai mặt phẳng (α) và (β). 4. Tìm hình chiếu A’ của A trên đường thẳng d. Cách 1 : + Viết phương trình mặt phẳng (P) chứa A và vuông góc với d. + Hình chiếu A’ là giao điểm của d và (P). Cách 2 : + Tìm tọa độ điểm A’ theo tham số t (A’ thuộc d). + Lập phương trình AA’.ud = 0. Giải phương trình tìm t suy ra tọa độ điểm A’. 5. Tìm điểm M’ đối xứng với M qua (P). + Tìm hình chiếu H của M trên (P) (khi đó H là trung điểm MM’). + Áp dụng công thức tính tọa độ trung điểm suy ra tọa độ điểm M’.
Viết phương trình mặt cầu
Tài liệu gồm 10 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán viết phương trình mặt cầu, được phát triển dựa trên câu 33 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu viết phương trình mặt cầu: A. KIẾN THỨC CẦN NẮM 1. Phương trình mặt cầu (S) dạng 1 Để viết phương trình mặt cầu (S), ta cần tìm tâm I(a;b;c) và bán kính R. Khi đó (S) có tâm I(a;b;c) và bán kính R khi và chỉ khi (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu (S) dạng 2 (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0 với a^2 + b^2 + c^2 – d > 0 là phương trình mặt cầu dạng 2 Tâm I(a;b;c) và bán kính: R = √(a^2 + b^2 + c^2 – d) > 0. [ads] B. BÀI TẬP MẪU 1. Bài toán : Trong không gian Oxyz, cho mặt cầu (S) có tâm là điểm I(0;0;-3) và đi qua điểm M(4;0;0). Phương trình của (S) là? 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán viết phương trình của mặt cầu. b. Hướng giải: + Bước 1: (S) có tâm I(a;b;c) và bán kính R ⇔ (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. + Bước 2: R = IM = √[(4 – 0)^2 + (0 – 0)^2 + (0 + 3)^2] = 5. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Đường thẳng trong hệ trục Oxyz (VD - VDC) - Nguyễn Xuân Chung
Tài liệu gồm 33 trang được biên soạn bởi thầy giáo Nguyễn Xuân Chung, hướng dẫn giải một số bài toán vận dụng và vận dụng cao liên quan đến phương trình đường thẳng trong hệ trục tọa độ không gian Oxyz, giúp học sinh khối 12 học tốt chương trình Hình học 12 chương 3 và ôn thi Trung học Phổ thông Quốc gia môn Toán. Khái quát nội dung tài liệu đường thẳng trong hệ trục Oxyz (VD – VDC) – Nguyễn Xuân Chung: I. CÁC VẤN ĐỀ VÀ VÍ DỤ GIẢI TOÁN Vấn đề 1 : Lập phương trình đường thẳng. Trong phần này chúng ta nghiên cứu giải một số bài toán về đường thẳng trong hệ tọa không gian Oxyz ở mức vận dụng và vận dụng cao. Trong đó có các mối liên hệ bao gồm điểm – đường thẳng – mặt phẳng – mặt cầu, nhưng chủ đề là đường thẳng. Như lập phương trình đường thẳng. Có một số bài toán mà đề bài cho giả thiết về đường thẳng, nhưng trong bài làm ta rất ít sử dụng đến kiến thức về đường thẳng trong không gian. [ads] Vấn đề 2 : Khoảng cách – góc – min – max. Xuất phát là: Đường thẳng ∆ đi qua điểm M(x0;y0;z0), có véctơ chỉ phương u = (a;b;c) và điểm A(x1;y1;z1) không thuộc ∆. Đặc biệt hơn khi ∆ có thể viết được dạng chính tắc là: (x – x0)/a = (y – y0)/b = (z – z0)/c. Các bài toán vận dụng đơn giản là: + Tìm tọa độ hình chiếu H của A trên ∆. + Tìm tọa độ A’ đối xứng của A qua ∆. + Tính khoảng cách từ A đến ∆. Cả ba bài toán trên đều được giải nếu ta tìm được tọa độ của H. Cách giải ta thường sử dụng là: Lấy điểm H thuộc ∆ dạng tham số, sau đó tính AH, rồi cho u.AH = 0 để tìm tham số t, cuối cùng thay t trở về suy ra H. Hay một số cách giải khác. II. CÁC BÀI TẬP LUYỆN TẬP
Chuyên đề phương pháp tọa độ trong không gian - Huỳnh Đức Khánh
Tài liệu gồm 108 trang được biên soạn bởi thầy Huỳnh Đức Khánh, tóm tắt lý thuyết và tuyển chọn các dạng bài trắc nghiệm chuyên đề phương pháp tọa độ trong không gian Oxyz có đáp án và lời giải chi tiết, giúp học sinh khối 12 học tốt chương trình Hình học 12 chương 3 và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Khái quát nội dung chuyên đề phương pháp tọa độ trong không gian – Huỳnh Đức Khánh: BÀI SỐ 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN. A. Lý thuyết 1. Tọa độ của điểm và của vectơ. 2. Biểu thức tọa độ của các phép toán vectơ. 3. Tích vô hướng của hai vectơ. 4. Tích có hướng của hai vectơ. 5. Phương trình mặt cầu. B. Các dạng toán và bài tập trắc nghiệm Dạng 1. Tọa độ của vectơ. Dạng 2. Tọa độ của điểm. Dạng 3. Tích có hướng của hai vectơ. Dạng 4. Phương trình mặt cầu. BÀI SỐ 2 . PHƯƠNG TRÌNH MẶT PHẲNG. A. Lý thuyết 1. Vectơ pháp tuyến của mặt phẳng. 2. Phương trình tổng quát của mặt phẳng. 3. Vị trí tương đối. 4. Khoảng cách từ một điểm đến một mặt phẳng. [ads] B. Các dạng toán và bài tập trắc nghiệm Dạng 1. Viết phương trình mặt phẳng. Dạng 2. Khoảng cách từ một điểm đến mặt phẳng. Dạng 3. Vị trí tương đối. Dạng 4. Góc giữa hai mặt phẳng. Dạng 5. Tìm điểm thỏa điều kiện cho trước. BÀI SỐ 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. A. Lý thuyết 1. Vectơ chỉ phương của đường thẳng. 2. Phương trình tham số của đường thẳng. 3. Vị trí tương đối. B. Các dạng toán và bài tập trắc nghiệm Dạng 1. Viết phương trình mặt phẳng. Dạng 2. Viết phương trình đường thẳng. Dạng 3. Hình chiếu – khoảng cách. Dạng 4. Vị trí tương đối. Dạng 5. Góc. Dạng 6. Tìm điểm thỏa điều kiện cho trước.