Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 11 môn Toán lần 3 năm 2018 2019 trường Nguyễn Viết Xuân Vĩnh Phúc

Nội dung Đề KSCL lớp 11 môn Toán lần 3 năm 2018 2019 trường Nguyễn Viết Xuân Vĩnh Phúc Bản PDF Sytu giới thiệu đến thầy, cô và các em học sinh khối 11 nội dung đề KSCL Toán lớp 11 lần 3 năm 2018 – 2019 trường Nguyễn Viết Xuân – Vĩnh Phúc, kỳ thi được tổ chức nhằm kiểm tra chất lượng môn Toán của học sinh khối 11 giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề KSCL Toán lớp 11 lần 3 năm 2018 – 2019 trường Nguyễn Viết Xuân – Vĩnh Phúc có mã đề 101, được được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài tập, học sinh làm khảo sát trong thời gian 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán lớp 11 lần 3 năm 2018 – 2019 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho đường thẳng a và mặt phẳng (P). Trong các khẳng định sau, khẳng định nào sai? A. Nếu đường thẳng a và mặt phẳng (P) có một điểm chung duy nhất thì a và mặt phẳng (P) cắt nhau. B. Nếu đường thẳng a và mặt phẳng (P) có hai điểm chung phân biệt thì a nằm trong mặt phẳng (P). C. Nếu đường thẳng a và mặt phẳng (P) không có điểm chung thì a // (P). D. Nếu đường thẳng a song song với đường thẳng b nằm trong mặt phẳng (P) thì a // (P). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang có AB // CD, AB = 2CD. Gọi M là điểm thuộc cạnh AD sao cho MA/MD = 1/2. Mặt phẳng (a) qua M và song song với mặt phẳng (SAB) cắt cạnh SD, SC, BC lần lượt tại điểm N, P, Q. Gọi S_MNPQ và S_SAB lần lượt là diện tích của tứ giác MNPQ và diện tích của tam giác SAB . Tính tỉ số S_MNPQ/S_SAB. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao của hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với AI = x (0 < x < a). Gọi (P) là mặt phẳng đi qua I và song song với mặt phẳng (SBD). Biết (P) cắt hình chóp theo thiết diện có diện tích S. Tìm x để S lớn nhất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát môn Toán 11 năm học 2017 - 2018 trường THPT Quế Võ 2 - Bắc Ninh
Đề khảo sát môn Toán 11 năm học 2017 – 2018 trường THPT Quế Võ 2 – Bắc Ninh gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong hình lục giác đều ABCDEF tâm O, M và K là trung điểm của EF và BD. Phép quay tâm A góc quay 60◦ biến tam giác AFE thành: A. Tam giác AKD B. Tam giác AOC C. Tam giác DOB D. Tam giác F OB + Cho tứ diện ABCD có E là trung điểm của cạnh CD. Gọi M là trọng tâm các tam giác ABC, N là trung điểm của AE. Hỏi đường thẳng MN cắt bao nhiêu đường thẳng trong số 6 đường thẳng AB, BC, CA, AD, BD và CD? [ads] A. Cắt ba đường thẳng B. Cắt bốn đường thẳng C. Không đường thẳng nào cắt D. Cắt hai đường thẳng + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, P là điểm trên cạnh AD sao cho AP = 2PD. Tìm giao điểm E của đường thẳng MP và mặt phẳng (BCD). A. E = BC ∩ MP B. E = BD ∩ MP C. E = CD ∩ MP D. E ≡ N
Đề thi KSCL Toán 11 lần 1 năm học 2017 - 2018 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho tập A = {1, 2, 3, 4, 5, 6}. Từ các chữ số của tập A có thể lập được tất cả bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau. + Cho đường thẳng d: 3x – 2y + 1 = 0 và điểm I(1; 0). Phép vị tự tâm I, tỷ số 2 biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’. + Cho A(1; 2), B(-2; 5) và đường tròn (T): x^2 + y^2 – 4x + 2y – 4 = 0. Tìm tọa độ hai điểm C, D cùng thuộc đường tròn (T) sao cho tứ giác ABCD là hình bình hành. [ads]
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 - 2018 trường THPT Hàn Thuyên - Bắc Ninh
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .
Đề khảo sát chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT Đồng Đậu - Vĩnh Phúc
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, mỗi câu tương ứng với 1 điểm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Hàng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong 1 ngày bởi công thức h = 3cos(πt/8 + π/4) + 12 (0 < t ≤ 24). Hỏi mực nước biển cao nhất tại thời điểm nào? [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm G(4/3; 1), trung điểm BC là M(1; 1), đường cao kẻ từ B thuộc đường thẳng có phương trình x + y – 7 = 0. Hãy xác định tọa độ các đỉnh A, B, C. + Trong mặt phẳng tọa độ Oxy, cho đường hai thẳng d: x – 2y + 6 = 0 và d’: x – 2y + 13 = 0. Tìm tọa độ vectơ v, biết |v| = √10, d’ là ảnh của d qua phép tịnh tiến theo vectơ v và vectơ v có hoành độ là số nguyên.