Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 11 môn Toán THPT QG 2019 2020 lần 1 trường Yên Phong 1 Bắc Ninh

Nội dung Đề thi thử lớp 11 môn Toán THPT QG 2019 2020 lần 1 trường Yên Phong 1 Bắc Ninh Bản PDF Nhằm giúp học sinh khối 11 sớm được rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia năm 2021, vừa qua, trường THPT Yên Phong số 1, tỉnh Bắc Ninh tổ chức kỳ thi thử THPT Quốc gia môn Toán lớp 11 năm học 2019 – 2020 lần thứ nhất. Đề thi thử Toán lớp 11 THPT QG năm học 2019 – 2020 lần 1 trường THPT Yên Phong số 1 – Bắc Ninh mã đề 668 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung kiểm tra thuộc chương trình Toán lớp 10 và Toán lớp 11 học sinh đã được học, đề thi có đáp án. Trích dẫn đề thi thử Toán lớp 11 THPT QG 2019 – 2020 lần 1 trường Yên Phong 1 – Bắc Ninh : + Cho phép thử T với không gian mẫu Ω và A, B là hai biến cố liên quan đến T. Mệnh đề nào sau đây sai? A. Nếu A và B xung khắc thì P(A ∪ B) = P(A) + P(B). B. Nếu A và B đối nhau thì A và B xung khắc. C. Nếu A và B độc lập thì P(A.B) = P(A).P(B) D. Nếu A và B xung khắc thì A và B đối nhau. + Năm nay, bạn Minh đang học lớp 11. Hết học kỳ 1, bạn đạt kết quả học tập tốt, nên đầu tháng 1/2020, bố bạn quyết định mang số tiền dành dụm 100 triệu đồng mang ra ngân hàng gửi tiết kiệm để chuẩn bị sang năm cho bạn đi học Đại học Biết rằng, tiền gửi ngân hàng được tính theo hình thức lãi kép, với lãi suất không kỳ hạn là 0,6%/tháng (lãi được nhập vào gốc sau mỗi tháng). Hỏi nếu hết tháng 8/2021, bố bạn đi rút tiền ngân hàng, sẽ rút được bao nhiêu tiền? (kết quả làm tròn đến hàng trăm nghìn). A. 110.900.000 đồng. B. 112.000.000 đồng. C. 113.300.000 đồng. D. 112.700.000 đồng. [ads] + Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AB, AD. Gọi d là giao tuyến của hai mặt phẳng (BCD) và (CMN). Chọn khẳng định sai? A. MN, BD, d là ba đường thẳng đồng quy. B. d // MN. C. d // BD. D. d đi qua C. + Đề kiểm tra trắc nghiệm môn Toán lớp 11 gồm 25 câu, mỗi câu có bốn phương án trả lời trong đó có duy nhất một phương án đúng. Trả lời đúng mỗi câu được 0.4 điểm, trả lời sai không có điểm cho câu đó. Một học sinh không học bài nên làm bài bằng cách chọn ngẫu nhiên một phương án trả lời cho mỗi câu hỏi. Biết rằng có 3 câu bạn đó đã chắc chắn đã loại được một phương án sai. Xác suất để bạn đó được 2 điểm gần nhất với số nào sau đây? + Trong các khẳng định sau, hãy chọn khẳng định đúng? A. Trong không gian, hai đường thẳng cùng cắt một đường thẳng khác thì cắt nhau. B. Trong không gian, hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. C. Trong không gian, hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. D. Trong không gian, hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường THPT Yên Lạc 2 Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường THPT Yên Lạc 2 Vĩnh Phúc Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề thi bao gồm các chủ đề: lượng giác, cấp số cộng và cấp số nhân, nhị thức Newton, xác suất, giới hạn, hình học tọa độ trong mặt phẳng Oxy, vectơ, hình học không gian, min – max, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 : + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác trên. + Cho hình đa giác đều H có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình H. Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật không phải là hình vuông? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho vtSM = 1/3.vtSB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD. File WORD (dành cho quý thầy, cô):
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường Minh Châu Hưng Yên
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường Minh Châu Hưng Yên Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 trường Minh Châu – Hưng Yên gồm 1 trang với 9 bài toán tự luận, thí sinh làm bài trong 120 phút, không kể thời gian phát đề, đề thi có lời giải chi tiết . Các dạng toán trong đề KSCL đội tuyển HSG Toán lớp 11 : + Giải phương trình lượng giác + Hàm số và các bài toán liên quan + Tính giới hạn + Nhị thức Newton + Giải hệ phương trình vô tỉ + Phương pháp tọa độ trong mặt phẳng Oxy + Hình học không gian + Tìm công thức số hạng tổng quát của dãy số
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn nhằm giúp nhà trường và giáo viên kiểm tra lại năng lực môn Toán của học sinh khối 11 nằm trong đội tuyển học sinh giỏi Toán lớp 11 của nhà trường sau quá trình bồi dưỡng, đây là kỳ thi cần thiết, cũng như là bước chuẩn bị sau cùng cho các em trước khi tham dự kỳ thi học sinh giỏi Toán lớp 11 tỉnh Vĩnh Phúc. Đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 08 bài toán, bao quát toàn diện các kiến thức Toán lớp 11 mà các em đã được ôn tập trước đó, thời gian làm bài thi môn Toán là 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Cho các chữ số 0; 1; 2; 3; 4; 5; 6; 7. Từ 8 chữ số trên lập được bao nhiêu số tự nhiên có 8 chữ số đôi một khác nhau sao cho tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang có AD = 2a, AB = BC = CD = a, góc BAD = 60 độ, SA vuông góc với đáy và SA = a√3. M và I là hai điểm thỏa mãn 3MI + MS = 0, 4IS + 3ID = 0. Mặt phẳng (AMI) cắt SC tại N. a) Chứng minh đường thẳng SD vuông góc với mặt phẳng (AMI). b) Chứng minh góc ANI = 90 độ, góc AMI = 90 độ. c) Tính diện tích của thiết diện tạo bởi mặt phẳng (AMI) và hình chóp S.ABCD. + Cho tam giác ABC có BC = a, AB = c, AC = b. Biết góc BAC = 90 độ và a, b√2/3, c theo thứ tự tạo thành cấp số nhân. Tính số đo góc B, C.
Đề KSCL học sinh giỏi lớp 11 môn Toán lần 1 năm 2022 2023 trường THPT Quế Võ 1 Bắc Ninh
Nội dung Đề KSCL học sinh giỏi lớp 11 môn Toán lần 1 năm 2022 2023 trường THPT Quế Võ 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng học sinh giỏi môn Toán lớp 11 lần 1 năm học 2022 – 2023 trường THPT Quế Võ số 1, tỉnh Bắc Ninh; đề thi gồm 01 trang với 06 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm. Trích dẫn Đề KSCL học sinh giỏi Toán lớp 11 lần 1 năm 2022 – 2023 trường THPT Quế Võ 1 – Bắc Ninh : + Gọi X là tập hợp tất cả các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên từ X ra một số. Tính xác suất để chọn được số không có hai chữ số chẵn đứng liền kề. + Trong mặt phẳng Oxy cho đường tròn 13 2 2 C1 x y, đường tròn 6 25 2 2 C2 x y 1. Tìm giao điểm của hai đường tròn C1 và C2. 2. Gọi giao điểm có tung độ dương của C1 và C2 là A, viết phương trình đường thẳng đi qua A cắt C1 và C2 theo hai dây cung có độ dài bằng nhau. + Cho hình thoi ABCD tâm O có 0 B 60. Điểm S nằm ngoài mặt phẳng (ABCD) thỏa mãn SAB SAC. Cho M, N lần lượt là trung điểm của SA và CD. 1. Chứng minh rằng: MN SBC. 2. Dựng thiết diện của hình chóp S.ABCD bị cắt bởi mặt phẳng qua MN và song song với SC. Thiết diện là hình gì? 3. Tính tỉ số diện tích của thiết diện và tam giác SBC.