Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức - Nguyễn Tài Chung

Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, hướng dẫn sử dụng nguyên lí Dirichle chứng minh bất đẳng thức, phù hợp với học sinh bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu sử dụng nguyên lí Dirichle chứng minh bất đẳng thức – Nguyễn Tài Chung: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Khẳng định gần như hiển nhiên này được gọi là Nguyên lý Dirichle. [ads] Bây giờ ta hình dung trên trục số, điểm 0 chia trục số thành 2 phần, hay 2 cái chuồng mà vách ngăn là số 0. Như thế với ba số a, b, c mà ta xem như là 3 con chim Bồ Câu thì sẽ có một cái chuồng chứa ít nhất hai con chim Bồ Câu, nghĩa là sẽ có hai số cùng không âm (tức là có hai con chim Bồ Câu cùng thuộc chuồng [0; +∞)) hoặc cùng không dương (tức là có hai con chim Bồ Câu cùng thuộc chuồng (−∞; 0]). Do đó ta có thể giả sử có hai số, mà ta gọi là a và b, sao cho ab ≥ 0. Như vậy, trong bài toán bất đẳng thức, khi ta đã chọn được “điểm rơi” (tức là đẳng thức của bài toán), ví dụ như đẳng thức xảy ra khi a = b = c = k thì ta có thể giả sử 2 số (a − k), (b − k) cùng không âm hoặc cùng không dương, tức là có thể giả sử (a − k)(b − k) ≥ 0. B. BÀI TẬP

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tứ giác nội tiếp ôn thi vào
Nội dung Chuyên đề tứ giác nội tiếp ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi tứ giác nội tiếp cho học sinh lớp 9 Tài liệu ôn thi tứ giác nội tiếp cho học sinh lớp 9 Tài liệu này bao gồm 18 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và lựa chọn các bài tập chuyên đề tứ giác nội tiếp. Đồng thời, tài liệu cũng cung cấp đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Các bài toán trong tài liệu được lựa chọn từ các nguồn đáng tin cậy, đảm bảo mang đến cho học sinh những bài tập đa dạng để rèn luyện kỹ năng và nắm vững kiến thức.
Chuyên đề góc với đường tròn ôn thi vào
Nội dung Chuyên đề góc với đường tròn ôn thi vào Bản PDF - Nội dung bài viết Chuyên đề góc với đường tròn ôn thi vào lớp 10 môn Toán Chuyên đề góc với đường tròn ôn thi vào lớp 10 môn Toán Bộ tài liệu gồm 22 trang, cung cấp hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề về góc với đường tròn. Tài liệu bao gồm đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập và chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán. Các bài toán trong tài liệu được lựa chọn từ các nguồn đáng tin cậy. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh nắm vững kiến thức và tự tin hơn khi đối mặt với các bài toán liên quan đến góc và đường tròn trong kì thi sắp tới.
Chuyên đề đường tròn ôn thi vào
Nội dung Chuyên đề đường tròn ôn thi vào Bản PDF - Nội dung bài viết Chuyên đề đường tròn ôn thi vào lớp 10 môn Toán Chuyên đề đường tròn ôn thi vào lớp 10 môn Toán Tài liệu chuyên đề đường tròn ôn thi vào lớp 10 môn Toán bao gồm 26 trang. Trong tài liệu, hướng dẫn cách giải các bài tập chuyên đề về đường tròn và tuyển chọn các bài tập phù hợp để học sinh lớp 9 ôn tập và chuẩn bị cho kì thi tuyển sinh vào lớp 10. Đặc biệt, tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh hiểu rõ từng bước thực hiện. Các bài toán trong sách được lựa chọn kỹ lưỡng từ các nguồn uy tín và phù hợp với đề thi thực tế.
Chuyên đề hệ thức lượng trong tam giác vuông ôn thi vào
Nội dung Chuyên đề hệ thức lượng trong tam giác vuông ôn thi vào Bản PDF - Nội dung bài viết Chuyên đề hệ thức lượng trong tam giác vuông ôn thi vào Chuyên đề hệ thức lượng trong tam giác vuông ôn thi vào Tài liệu này bao gồm 17 trang, hướng dẫn chi tiết phương pháp giải và tuyển chọn các bài tập chuyên đề về hệ thức lượng trong tam giác vuông. Đây là tài liệu hữu ích cho học sinh lớp 9 ôn tập và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Mỗi bài tập đi kèm với đáp án và lời giải chi tiết, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài toán. Các bài toán trong tài liệu được lựa chọn từ các nguồn đáng tin cậy, đảm bảo tính chất chất lượng và độ khó tương đương với kỳ thi thực tế.