Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lần 2 lớp 11 môn Toán năm 2021 2022 trường THPT Hàm Long Bắc Ninh

Nội dung Đề thi thử lần 2 lớp 11 môn Toán năm 2021 2022 trường THPT Hàm Long Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi thử lần 2 môn Toán lớp 11 năm học 2021 – 2022 trường THPT Hàm Long, tỉnh Bắc Ninh; đề thi mã đề 132 gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án Mã 132 Mã 209 Mã 357 Mã 485 Mã 570 Mã 628; kỳ thi được diễn ra vào tháng 04 năm 2022. Trích dẫn đề thi thử lần 2 Toán lớp 11 năm 2021 – 2022 trường THPT Hàm Long – Bắc Ninh : + Cho tứ diện ABCD trong đó AB CD 6 3 góc giữa AB và CD là 60 và điểm M trên BC sao cho BM MC 2. Mặt phẳng P qua M song song với AB và CD cắt BD AD AC lần lượt tại M N Q. Diện tích MNPQ bằng? + Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi là góc giữa hai mặt phẳng SAB và SCD. Khi đó tan bằng? + Gọi u là vectơ chỉ phương của đường thẳng a và v là vectơ chỉ phương của đường thẳng b và u v. Khẳng định nào dưới đây đúng? A. Góc giữa hai đường thẳng a và b bằng 180 nếu 0 0 90 180 B. Góc giữa hai đường thẳng a và b bằng C. Góc giữa hai đường thẳng a và b bằng 180 nếu 0 0 0 90 D. Góc giữa hai đường thẳng a và b bằng nếu 0 90. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát môn Toán 11 năm học 2017 - 2018 trường THPT Quế Võ 2 - Bắc Ninh
Đề khảo sát môn Toán 11 năm học 2017 – 2018 trường THPT Quế Võ 2 – Bắc Ninh gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong hình lục giác đều ABCDEF tâm O, M và K là trung điểm của EF và BD. Phép quay tâm A góc quay 60◦ biến tam giác AFE thành: A. Tam giác AKD B. Tam giác AOC C. Tam giác DOB D. Tam giác F OB + Cho tứ diện ABCD có E là trung điểm của cạnh CD. Gọi M là trọng tâm các tam giác ABC, N là trung điểm của AE. Hỏi đường thẳng MN cắt bao nhiêu đường thẳng trong số 6 đường thẳng AB, BC, CA, AD, BD và CD? [ads] A. Cắt ba đường thẳng B. Cắt bốn đường thẳng C. Không đường thẳng nào cắt D. Cắt hai đường thẳng + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, P là điểm trên cạnh AD sao cho AP = 2PD. Tìm giao điểm E của đường thẳng MP và mặt phẳng (BCD). A. E = BC ∩ MP B. E = BD ∩ MP C. E = CD ∩ MP D. E ≡ N
Đề thi KSCL Toán 11 lần 1 năm học 2017 - 2018 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho tập A = {1, 2, 3, 4, 5, 6}. Từ các chữ số của tập A có thể lập được tất cả bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau. + Cho đường thẳng d: 3x – 2y + 1 = 0 và điểm I(1; 0). Phép vị tự tâm I, tỷ số 2 biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’. + Cho A(1; 2), B(-2; 5) và đường tròn (T): x^2 + y^2 – 4x + 2y – 4 = 0. Tìm tọa độ hai điểm C, D cùng thuộc đường tròn (T) sao cho tứ giác ABCD là hình bình hành. [ads]
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 - 2018 trường THPT Hàn Thuyên - Bắc Ninh
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .
Đề khảo sát chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT Đồng Đậu - Vĩnh Phúc
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, mỗi câu tương ứng với 1 điểm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Hàng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong 1 ngày bởi công thức h = 3cos(πt/8 + π/4) + 12 (0 < t ≤ 24). Hỏi mực nước biển cao nhất tại thời điểm nào? [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm G(4/3; 1), trung điểm BC là M(1; 1), đường cao kẻ từ B thuộc đường thẳng có phương trình x + y – 7 = 0. Hãy xác định tọa độ các đỉnh A, B, C. + Trong mặt phẳng tọa độ Oxy, cho đường hai thẳng d: x – 2y + 6 = 0 và d’: x – 2y + 13 = 0. Tìm tọa độ vectơ v, biết |v| = √10, d’ là ảnh của d qua phép tịnh tiến theo vectơ v và vectơ v có hoành độ là số nguyên.